scholarly journals Short-Term Pretreatment With Low-Dose Hydrogen Peroxide Enhances the Efficacy of Bone Marrow Cells for Therapeutic Angiogenesis

2008 ◽  
Vol 47 (1) ◽  
pp. 239
Author(s):  
M. Kubo ◽  
T. Li ◽  
R. Suzuki
2007 ◽  
Vol 292 (6) ◽  
pp. H2582-H2588 ◽  
Author(s):  
Masayuki Kubo ◽  
Tao-Sheng Li ◽  
Ryo Suzuki ◽  
Mako Ohshima ◽  
Shu-Lan Qin ◽  
...  

Therapeutic angiogenesis can be induced by the implantation of bone marrow cells (BMCs). Hydrogen peroxide (H2O2) has been shown to increase VEGF expression and to be involved in angiogenesis. We tested the hypothesis that pretreatment with H2O2 enhances the efficacy of BMCs for neovascularization. H2O2 pretreatment was done by incubating mouse BMCs in 5 μM H2O2 for 30 min, followed by washing twice with PBS. The H2O2-pretreated and untreated BMCs were then studied in vitro and in vivo. RT-PCR analysis showed that expression of VEGF and Flk-1 mRNA was significantly higher in H2O2-pretreated BMCs than in untreated BMCs after 12 and 24 h of culture ( P < 0.01). Pretreatment with H2O2 also effectively enhanced the VEGF production and endothelial differentiation from BMCs after 1 and 7 days of culture ( P < 0.05). To estimate the angiogenic potency in vivo, H2O2-pretreated or untreated BMCs were intramuscularly implanted into the ischemic hindlimbs of mice. After 14 days of treatment, many of the H2O2-pretreated BMCs were viable, showed endothelial differentiation, and were incorporated in microvessels. Conversely, the survival and incorporation of the untreated BMCs were relatively poor. Microvessel density and blood flow in the ischemic hindlimbs were significantly greater in the mice implanted with H2O2-pretreated BMCs than in those implanted with untreated BMCs ( P < 0.05). These results show that the short-term pretreatment of BMCs with low-dose H2O2 is a novel, simple, and feasible method of enhancing their angiogenic potency.


2002 ◽  
Vol 283 (2) ◽  
pp. H468-H473 ◽  
Author(s):  
Tao-Sheng Li ◽  
Kimikazu Hamano ◽  
Kazuhiko Suzuki ◽  
Hiroshi Ito ◽  
Nobuya Zempo ◽  
...  

Therapeutic angiogenesis can be induced by local implantation of bone marrow cells. We tried to enhance the angiogenic potential of this treatment by ex vivo hypoxia stimulation of bone marrow cells before implantation. Bone marrow cells were collected and cultured at 33°C under 2% O2-5% CO2-90% N2 (hypoxia) or 95% air-5% CO2 (normoxia). Cells were also injected into the ischemic hindlimb of rats after 24 h of culture. Hypoxia culture increased the mRNA expression of vascular endothelial growth factor (VEGF), vascular endothelial (VE)-cadherin, and fetal liver kinase-1 (Flk-1) from 2.5- to fivefold in bone marrow cells. The levels of VEGF protein in the ischemic hindlimb were significantly higher 1 and 3 days after implantation with hypoxia-cultured cells than with normoxia-cultured or noncultured cells. The microvessel density and blood flow rate in the ischemic hindlimbs were also significantly ( P< 0.001) higher 2 wk after implantation with hypoxia-cultured cells (89.7 ± 5.5%) than with normoxia-cultured cells (67.0 ± 9.6%) or noncultured cells (70.4 ± 7.7%). Ex vivo hypoxia stimulation increased the VEGF mRNA expression and endothelial differentiation of bone marrow cells, which together contributed to improved therapeutic angiogenesis in the ischemic hindlimb after implantation.


2010 ◽  
Vol 209 (2) ◽  
pp. 403-414 ◽  
Author(s):  
Maria Luisa Balestrieri ◽  
Shi-Jiang Lu ◽  
Filomena de Nigris ◽  
Alfonso Giovane ◽  
Sharon Williams-Ignarro ◽  
...  

Dose-Response ◽  
2012 ◽  
Vol 11 (3) ◽  
pp. dose-response.1 ◽  
Author(s):  
Sung Hak Chun ◽  
Ga-Young Park ◽  
Yu Kyeong Han ◽  
Sung Dae Kim ◽  
Joong Sun Kim ◽  
...  

Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 2304-2304
Author(s):  
Cheng Li ◽  
Daniel R. George ◽  
Nichole M. Havey ◽  
Jeffery M. Klco ◽  
Timothy J. Ley

Abstract Abstract 2304 Despite two decades of effort, deriving long-term repopulating hematopoietic stem/progenitor cells (HSPCs) from embryonic stem cells (ESCs) has proven to be extremely difficult. Both embryoid body (EB)-based and stroma-based methods have been extensively explored. However, robust production of HSPCs from C57BL/6J-derived mouse ESCs (mESCs) has not yet been reported. Furthermore, in vivo engraftment of mES-derived HSCs (from any strain) has been achieved only with forced expression of HoxB4 or related oncogenes, which creates significant limitations for most studies. Here, we describe a stroma-based co-culture method to differentiate HSCs and progenitor populations from C57BL/6J-derived mESCs. After simple co-culture on OP9 stroma cells for one week, C57BL/6J-derived mESC lines differentiate into cells that mark as HSCs, CMPs, GMPs, and MEPs (by immunophenotyping); these cells are capable of giving rise to erythrocytes, monocytes, and mast cells (by morphology and immunophenotyping) after another week of culture in methylcellulose with hematopoietic cytokines (SCF, IL-3, IL-6, and Epo). Similar in vitro hematopoietic differentiation has been achieved in several different C57BL/6J-derived mESCs (B6/Blu, B6-GFP, LK1, and B6 albino), B6/SVJ129 mESCs (R1), various SVJ129-derived mESCs (SWT16, EDJ22, and SCC10), and five independent C57BL/6J mouse embryonic fibroblast (MEF)-derived induced pluripotent stem cell (iPSC) lines. C57BL/6J ESCs derived from CAGGS-GFP transgenic mice (B6-GFP ESCs, which express high levels of GFP in all hematopoietic lineages) were used to determine whether we could obtain long-term engraftment of the OP9 differentiated ESCs. B6-GFP ESCs cultured for 7 days on OP9 cells were sorted by Kit+ surface staining. Sorted cells (1×105, 2×105, 4×105) were transferred into immunocompromised NSG mice via retro orbital injection (n=1 mouse per dose). Peripheral blood from the recipients injected with 2×105 and 4×105 cells showed 5% GFP positivity in the peripheral blood at weeks 12 and 16 post-transplant, while recipients injected with 1×105 cells had no detectable GFP+ cells in the periphery. Bone marrow cells and spleens were harvested at week 22. The recipient injected with 4×105 cells showed 5% GFP positivity in the bone marrow and 20% in the spleen. Engraftment was multi-lineage. Myeloid compartments (CD34+, CD11b+, Kit+, and Gr-1+) showed similar or less GFP positivity than overall bone marrow and spleen cells. Lymphoid (CD3+ and B220+) and erythroid (Ter119+) compartments also showed similar GFP positivity compared to overall bone marrow cells. However, lymphoid and erythroid compartments contained significantly higher GFP positivity (30–60%) than overall spleen cells. We have now modified the procedure to transfer 1×106 unfractionated B6-GFP ESCs grown for 7 days on OP9 stroma directly into NSG recipients. We have detected short-term engraftment 4 weeks post-injection in the peripheral blood of one recipient and multilineage splenic engraftment 8 weeks post-injection in two recipients, confirming that short-term repopulating cells are indeed generated by this method. Secondary transplants using the GFP+ bone marrow cells from the long-term engrafted mouse have been performed. This approach could be a valuable tool for studying the hematopoietic development of a variety of mESC lines, and potentially, iPSC lines as well. Disclosures: No relevant conflicts of interest to declare.


2002 ◽  
Vol 10 (1) ◽  
pp. 25-30 ◽  
Author(s):  
Yukihiro Itabashi ◽  
Shunji Narumi ◽  
Kenichi Hakamada ◽  
Nobukazu Watanabe ◽  
Kazunori Aoki ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document