Analyzing driving factors of land values in urban scale based on big data and non-linear machine learning techniques

2020 ◽  
Vol 94 ◽  
pp. 104537 ◽  
Author(s):  
Jun Ma ◽  
Jack C.P. Cheng ◽  
Feifeng Jiang ◽  
Weiwei Chen ◽  
Jingcheng Zhang

Prediction of diseases is one of the challenging tasks in healthcare domain. Conventionally the heart diseases were diagnosed by experienced medical professional and cardiologist with the help of medical and clinical tests. With conventional method even experienced medical professional struggled to predict the disease with sufficient accuracy. In addition, manually analysing and extracting useful knowledge from the archived disease data becomes time consuming as well as infeasible. The advent of machine learning techniques enables the prediction of various diseases in healthcare domain. Machine learning algorithms are trained to learn from the existing historical data and prediction models are being created to predict the unknown raw data. For the past two decades, machine learning techniques are extensively employed for disease prediction. Despite the capability of machine algorithm on learning from huge historical data which is stored in data mart and data warehouses using traditional database technologies such as Oracle OnLine Analytical Processing (OLAP). The conventional database technologies suffer from the limitation that they cannot handle huge data or unstructured data or data that comes with speed. In this context, big data tools and technologies plays a major role in storing and facilitating the processing of huge data. In this paper, an approach is proposed for prediction of heart diseases using Support Vector Algorithm in Spark environment. Support Vector Machine algorithm is basically a binary classifier which classifies both linear and non-linear input data. It transforms the non-linear data into hyper plan with the help of different kernel functions. Spark is a distributed big data processing platform which has a unique feature of keeping and processing a huge data in memory. The proposed approach is tested with a benchmark dataset from UCI repository and results are discussed.


2021 ◽  
Vol 119 ◽  
pp. 44-53
Author(s):  
Danilo Bertoni ◽  
Giacomo Aletti ◽  
Daniele Cavicchioli ◽  
Alessandra Micheletti ◽  
Roberto Pretolani

Author(s):  
Bruce Mellado ◽  
Jianhong Wu ◽  
Jude Dzevela Kong ◽  
Nicola Luigi Bragazzi ◽  
Ali Asgary ◽  
...  

COVID-19 is imposing massive health, social and economic costs. While many developed countries have started vaccinating, most African nations are waiting for vaccine stocks to be allocated and are using clinical public health (CPH) strategies to control the pandemic. The emergence of variants of concern (VOC), unequal access to the vaccine supply and locally specific logistical and vaccine delivery parameters, add complexity to national CPH strategies and amplify the urgent need for effective CPH policies. Big data and artificial intelligence machine learning techniques and collaborations can be instrumental in an accurate, timely, locally nuanced analysis of multiple data sources to inform CPH decision-making, vaccination strategies and their staged roll-out. The Africa-Canada Artificial Intelligence and Data Innovation Consortium (ACADIC) has been established to develop and employ machine learning techniques to design CPH strategies in Africa, which requires ongoing collaboration, testing and development to maximize the equity and effectiveness of COVID-19-related CPH interventions.


2020 ◽  
Vol 7 (1) ◽  
Author(s):  
Tahani Daghistani ◽  
Huda AlGhamdi ◽  
Riyad Alshammari ◽  
Raed H. AlHazme

AbstractOutpatients who fail to attend their appointments have a negative impact on the healthcare outcome. Thus, healthcare organizations facing new opportunities, one of them is to improve the quality of healthcare. The main challenges is predictive analysis using techniques capable of handle the huge data generated. We propose a big data framework for identifying subject outpatients’ no-show via feature engineering and machine learning (MLlib) in the Spark platform. This study evaluates the performance of five machine learning techniques, using the (2,011,813‬) outpatients’ visits data. Conducting several experiments and using different validation methods, the Gradient Boosting (GB) performed best, resulting in an increase of accuracy and ROC to 79% and 81%, respectively. In addition, we showed that exploring and evaluating the performance of the machine learning models using various evaluation methods is critical as the accuracy of prediction can significantly differ. The aim of this paper is exploring factors that affect no-show rate and can be used to formulate predictions using big data machine learning techniques.


Author(s):  
Suriya Murugan ◽  
Sumithra M. G.

Cognitive radio has emerged as a promising candidate solution to improve spectrum utilization in next generation wireless networks. Spectrum sensing is one of the main challenges encountered by cognitive radio and the application of big data is a powerful way to solve various problems. However, for the increasingly tense spectrum resources, the prediction of cognitive radio based on big data is an inevitable trend. The signal data from various sources is analyzed using the big data cognitive radio framework and efficient data analytics can be performed using different types of machine learning techniques. This chapter analyses the process of spectrum sensing in cognitive radio, the challenges to process spectrum data and need for dynamic machine learning algorithms in decision making process.


Sign in / Sign up

Export Citation Format

Share Document