FOXO3-induced oncogenic lncRNA CASC9 enhances gefitinib resistance of non-small-cell lung cancer through feedback loop

Life Sciences ◽  
2021 ◽  
pp. 120012
Author(s):  
Zhongxing Bing ◽  
Jiashu Han ◽  
Zhibo Zheng ◽  
Naixin Liang
Author(s):  
Dandan Li ◽  
Changjun He ◽  
Junfeng Wang ◽  
Yanbo Wang ◽  
Jianlong Bu ◽  
...  

Many studies have shown that downregulation of miR-138 occurs in a variety of cancers including non-small cell lung cancer (NSCLC). However, the precise mechanisms of miR-138 in NSCLC have not been well clarified. In this study, we investigated the biological functions and molecular mechanisms of miR-138 in NSCLC cell lines, discussing whether it could turn out to be a therapeutic biomarker of NSCLC in the future. In our study, we found that miR-138 is downregulated in NSCLC tissues and cell lines. Moreover, the low level of miR-138 was associated with increased expression of SOX4 in NSCLC tissues and cell lines. Upregulation of miR-138 significantly inhibited proliferation of NSCLC cells. In addition, invasion and EMT of NSCLC cells were suppressed by overexpression of miR-138. However, downregulation of miR-138 promoted cell growth and metastasis of NSCLC cells. Bioinformatics analysis predicted that SOX4 was a potential target gene of miR-138. Next, luciferase reporter assay confirmed that miR-138 could directly target SOX4. Consistent with the effect of miR-138, downregulation of SOX4 by siRNA inhibited proliferation, invasion, and EMT of NSCLC cells. Overexpression of SOX4 in NSCLC cells partially reversed the effect of miR-138 mimic. In addition, decreased SOX4 expression could increase the level of miR-138 via upregulation of p53. Introduction of miR-138 dramatically inhibited growth, invasion, and EMT of NSCLC cells through a SOX4/p53 feedback loop.


Oncotarget ◽  
2018 ◽  
Vol 9 (15) ◽  
pp. 12020-12034 ◽  
Author(s):  
Mengfan Qi ◽  
Ye Tian ◽  
Wang Li ◽  
Dan Li ◽  
Tian Zhao ◽  
...  

2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Zhiqiang Wu ◽  
Bin Xu ◽  
Zhiyi Yu ◽  
Qin He ◽  
Zhuyuan Hu ◽  
...  

Gefitinib is a tyrosine kinase inhibitor of EGFR (epidermal growth factor receptor) and represents the first-line treatment for EGFR mutation patients with NSCLC (non-small-cell lung cancer) therapeutics. However, NSCLC patients are inclined to develop acquired gefitinib drug resistance through nowadays, unarticulated mechanisms of chemoresistance. Here, we investigated the role of TF (Trifolium flavonoids) on sensitizing gefitinib resistance in NSCLC cells and revealed its potential mechanism of action. We demonstrated that TF exerted significantly potential chemosensitivity in gefitinib resistant NSCLC cells. MTT assay and cytological methods were used to analyze cell viability and apoptosis in NSCLC cell line PC-9R. Both TF and gefitinib suppressed PC-9R cell growth in a dose-dependent manner. Subtoxic concentrations of TF did significantly augment gefitinib-induced apoptosis in PC-9R cell line. The TF promoted chemosensitivity was major mediated by the PARP and caspases activation. Meanwhile, the TF promoted chemosensitivity also decreased the expression of Bcl-2 and Mcl-1. Finally, TF significantly reduced the phosphorylation levels of STAT3 and ERK. Altogether, the results of the present study indicated the potential mechanisms of chemosensitivity of TF in gefitinib-induced apoptosis of NSCLC by downregulating ERK and STAT3 signaling pathways and Bcl2 and Mcl-1 expression and a promising application of TF in therapy of NSCLC with gefitinib resistant.


2020 ◽  
Vol 11 (13) ◽  
pp. 3816-3826
Author(s):  
Chunjie Wen ◽  
Ge Xu ◽  
Shuai He ◽  
Yutang Huang ◽  
Jingjing Shi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document