scholarly journals Lithospheric mantle evolution monitored by overlapping large igneous provinces: Case study in southern Africa

Lithos ◽  
2009 ◽  
Vol 107 (3-4) ◽  
pp. 257-268 ◽  
Author(s):  
F. Jourdan ◽  
H. Bertrand ◽  
G. Féraud ◽  
B. Le Gall ◽  
M.K. Watkeys
2020 ◽  
Vol 132 (9-10) ◽  
pp. 1829-1844 ◽  
Author(s):  
Ashley Gumsley ◽  
Joaen Stamsnijder ◽  
Emilie Larsson ◽  
Ulf Söderlund ◽  
Tomas Naeraa ◽  
...  

Abstract U-Pb geochronology on baddeleyite is a powerful technique that can be applied effectively to chronostratigraphy. In southern Africa, the Kaapvaal Craton hosts a well-preserved Mesoarchean to Paleoproterozoic geological record, including the Neoarchean Ventersdorp Supergroup. It overlies the Witwatersrand Supergroup and its world-class gold deposits. The Ventersdorp Supergroup comprises the Klipriviersberg Group, Platberg Group, and Pniel Group. However, the exact timing of formation of the Ventersdorp Supergroup is controversial. Here we present 2789 ± 4 Ma and 2787 ± 2 Ma U-Pb isotope dilution-thermal ionization mass spectrometry (ID-TIMS) baddeleyite ages and geochemistry on mafic sills intruding the Witwatersrand Supergroup, and we interpret these sills as feeders to the overlying Klipriviersberg Group flood basalts. This constrains the age of the Witwatersrand Supergroup and gold mineralization to at least ca. 2.79 Ga. We also report 2729 ± 5 Ma and 2724 ± 7 Ma U-Pb ID-TIMS baddeleyite ages and geochemistry from a mafic sill intruding the Pongola Supergroup and on an east-northeast–trending mafic dike, respectively. These new ages distinguish two of the Ventersdorp Supergroup magmatic events: the Klipriviersberg and Platberg. The Ventersdorp Supergroup can now be shown to initiate and terminate with two large igneous provinces (LIPs), the Klipriviersberg and Allanridge, which are separated by Platberg volcanism and sedimentation. The age of the Klipriviersberg LIP is 2791–2779 Ma, and Platberg volcanism occurred at 2754–2709 Ma. The Allanridge LIP occurred between 2709–2683 Ma. Klipriviersberg, Platberg, and Allanridge magmatism may be genetically related to mantle plume(s). Higher heat flow and crustal melting resulted as a mantle plume impinged below the Kaapvaal Craton lithosphere, and this was associated with rifting and the formation of LIPs.


2014 ◽  
Vol 403 ◽  
pp. 254-262 ◽  
Author(s):  
David I. Armstrong McKay ◽  
Toby Tyrrell ◽  
Paul A. Wilson ◽  
Gavin L. Foster

Author(s):  
L.D. Ashwal

Abstract At least four spatially overlapping Large Igneous Provinces, each of which generated ∼1 x 106 km3 or more of basaltic magmas over short time intervals (<5 m.y.), were emplaced onto and into the Kaapvaal Craton between 2.7 and 0.18 Ga: Ventersdorp (2 720 Ma, ∼0.7 x 106 km3), Bushveld (2 056 Ma, ∼1.5 x 106 km3), Umkondo (1 105 Ma, ∼2 x 106 km3) and Karoo (182 Ma, ∼3 x 106 km3). Each of these has been suggested to have been derived from melting of sub-continental lithospheric mantle (SCLM) sources, but this is precluded because: (1) each widespread heating event sufficient to generate 1 to 2 x 106 km3 of basalt from the Kaapvaal SCLM (volume = 122 to 152 x 106 km3) would increase residual Mg# by 0.5 to 2 units, depending on degree of melting, and source and melt composition, causing significant depletion in already-depleted mantle, (2) repeated refertilization of the Kaapvaal SCLM would necessarily increase its bulk density, compromising its long-term buoyancy and stability, and (3) raising SCLM temperatures to the peridotite solidus would also have repeatedly destroyed lithospheric diamonds by heating and oxidation, which clearly did not happen. It is far more likely, therefore, that the Kaapvaal LIPs were generated from sub-lithospheric sources, and that their diverse geochemical and isotopic signatures represent variable assimilation of continental crustal components. Combined Sr and Nd isotopic data (n = 641) for the vast volumetric majority of Karoo low-Ti tholeiitic magmatic products can be successfully modelled as an AFC mixing array between a plume-derived parental basalt, with <10% of a granitic component derived from 1.1 Ga Namaqua-Natal crust. Archaean crustal materials are far too evolved (εNd ∼ -35) to represent viable contaminants. However, a very minor volume of geographically-restricted (and over-analysed) Karoo magmas, including picrites, nephelinites, meimechites and other unusual rocks may represent low-degree melting products of small, ancient, enriched domains in the Kaapvaal SCLM, generated locally during the ascent of large-volume, plume-derived melts. The SCLM-derived rocks comprise the well-known high-Ti (>2 to 3 wt.% TiO2) magma group, have εNd, 182 values between +10.5 and -20.9, and are characteristically enriched in Sr (up to 1 500 ppm), suggesting a possible connection to kimberlite, lamproite and carbonatite magmatism. These arguments may apply to continental LIPs in general, although at present, there are insufficient combined Sr + Nd isotopic data with which to robustly assess the genesis of other southern African LIPs, including Ventersdorp (n = 0), Bushveld (n = 55) and Umkondo (n = 18).


2020 ◽  
Vol 530 ◽  
pp. 115871 ◽  
Author(s):  
Yang Chen ◽  
David William Hedding ◽  
Xuming Li ◽  
Abraham Carel Greyling ◽  
Gaojun Li

2006 ◽  
Vol 241 (1-2) ◽  
pp. 307-322 ◽  
Author(s):  
F. Jourdan ◽  
G. Féraud ◽  
H. Bertrand ◽  
M.K. Watkeys ◽  
A.B. Kampunzu ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Luc S. Doucet ◽  
Zheng-Xiang Li ◽  
Hamed Gamal El Dien

AbstractRare oceanic diamonds are believed to have a mantle transition zone origin like super-deep continental diamonds. However, oceanic diamonds have a homogeneous and organic-like light carbon isotope signature (δ13C − 28 to − 20‰) instead of the extremely variable organic to lithospheric mantle signature of super-deep continental diamonds (δ13C − 25‰ to + 3.5‰). Here, we show that with rare exceptions, oceanic diamonds and the isotopically lighter cores of super-deep continental diamonds share a common organic δ13C composition reflecting carbon brought down to the transition zone by subduction, whereas the rims of such super-deep continental diamonds have the same δ13C as peridotitic diamonds from the lithospheric mantle. Like lithospheric continental diamonds, almost all the known occurrences of oceanic diamonds are linked to plume-induced large igneous provinces or ocean islands, suggesting a common connection to mantle plumes. We argue that mantle plumes bring the transition zone diamonds to shallower levels, where only those emplaced at the base of the continental lithosphere might grow rims with lithospheric mantle carbon isotope signatures.


Sign in / Sign up

Export Citation Format

Share Document