Decoupling of the Lu–Hf, Sm–Nd, and Rb–Sr isotope systems in eclogites and a garnetite from the Sulu ultra-high pressure metamorphic terrane: Causes and implications

Lithos ◽  
2015 ◽  
Vol 234-235 ◽  
pp. 1-14 ◽  
Author(s):  
Yung-Hsin Liu ◽  
Huai-Jen Yang ◽  
Eiichi Takazawa ◽  
Madhusoodhan Satish-Kumar ◽  
Chen-Feng You
2022 ◽  
Vol 13 (1) ◽  
Author(s):  
P. Bouilhol ◽  
B. Debret ◽  
E. C. Inglis ◽  
M. Warembourg ◽  
T. Grocolas ◽  
...  

AbstractSerpentinites are an important sink for both inorganic and organic carbon, and their behavior during subduction is thought to play a fundamental role in the global cycling of carbon. Here we show that fluid-derived veins are preserved within the Zermatt-Saas ultra-high pressure serpentinites providing key evidence for carbonate mobility during serpentinite devolatilisation. We show through the O, C, and Sr isotope analyses of vein minerals and the host serpentinites that about 90% of the meta-serpentinite inorganic carbon is remobilized during slab devolatilisation. In contrast, graphite-like carbonaceous compounds remain trapped within the host rock as inclusions within metamorphic olivine while the bulk elemental and isotope composition of organic carbon remains relatively unchanged during the subduction process. This shows a decoupling behavior of carbon during serpentinite dehydration in subduction zones. This process will therefore facilitate the transfer of inorganic carbon to the mantle wedge and the preferential slab sequestration of organic carbon en route to the deep mantle.


1996 ◽  
Vol 60 (400) ◽  
pp. 461-471 ◽  
Author(s):  
D. A. Carswell ◽  
R. N. Wilson ◽  
M. Zhai

AbstractPetrographic features and compositions of titanites in eclogites within the ultra-high pressure metamorphic terrane in central Dabieshan are documented and phase equilibria and thermobarometric implications discussed. Carbonate-bearing eclogite pods in marble at Shuanghe contain primary metamorphic aluminous titanites, with up to 39 mol.% Ca(Al,Fe3+)FSiO4 component. These titanites formed as part of a coesite-bearing eclogite assemblage and thus provide the first direct petrographic evidence that AlFTi−1O−1 substitution extends the stability of titanite, relative to rutile plus carbonate, to pressures within the coesite stability field. However, it is emphasised that A1 and F contents of such titanites do not provide a simple thermobarometric index of P—T conditions but are constrained by the activity of fluorine, relative to CO2, in metamorphic fluids — as signalled by observations of zoning features in these titanites.These ultra-high pressure titanites show unusual breakdown features developed under more H2O-rich amphibolite-facies conditions during exhumation of these rocks. In some samples aluminous titanites have been replaced by ilmenite plus amphibole symplectites, in others by symplectitic intergrowths of secondary, lower Al and F, titanite plus plagioclase. Most other coesite-bearing eclogite samples in the central Dabieshan terrane contain peak assemblage rutile often partly replaced by grain clusters of secondary titanites with customary low Al and F contents.


2013 ◽  
Vol 57 (1) ◽  
pp. 104-116 ◽  
Author(s):  
YanFei Zhang ◽  
Yao Wu ◽  
Chao Wang ◽  
ZhenMin Jin ◽  
Hans-Peter Schertl

Lithos ◽  
2018 ◽  
Vol 314-315 ◽  
pp. 156-164 ◽  
Author(s):  
Nadia Curetti ◽  
Costanza Bonadiman ◽  
Roberto Compagnoni ◽  
Luca Nodari ◽  
Ingrid Corazzari ◽  
...  

2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Petra Maierová ◽  
Karel Schulmann ◽  
Pavla Štípská ◽  
Taras Gerya ◽  
Ondrej Lexa

AbstractThe classical concept of collisional orogens suggests that mountain belts form as a crustal wedge between the downgoing and overriding plates. However, this orogenic style is not compatible with the presence of (ultra-)high pressure crustal and mantle rocks far from the plate interface in the Bohemian Massif of Central Europe. Here we use a comparison between geological observations and thermo-mechanical numerical models to explain their formation. We suggest that continental crust was first deeply subducted, then flowed laterally underneath the lithosphere and eventually rose in the form of large partially molten trans-lithospheric diapirs. We further show that trans-lithospheric diapirism produces a specific rock association of (ultra-)high pressure crustal and mantle rocks and ultra-potassic magmas that alternates with the less metamorphosed rocks of the upper plate. Similar rock associations have been described in other convergent zones, both modern and ancient. We speculate that trans-lithospheric diapirism could be a common process.


Sign in / Sign up

Export Citation Format

Share Document