Deep infiltration of surface water during deformation? Evidence from a low- δ18O shear zone at Koegel Fontein, Namaqualand, South Africa

Lithos ◽  
2020 ◽  
Vol 366-367 ◽  
pp. 105562
Author(s):  
Benjamin A. Whitehead ◽  
Chris Harris ◽  
R. Alastair Sloan
2013 ◽  
Vol 9 (3) ◽  
pp. 2309-2356 ◽  
Author(s):  
S. Weldeab ◽  
J.-B. W. Stuut ◽  
R. R. Schneider ◽  
W. Siebel

Abstract. We established a multi-proxy time series comprising analyses of major elements in bulk sediments, Sr and Nd isotopes and grain size of terrigenous fraction, and δ18O and δ13C in tests of Neogloboquadrina pachyderma (sinistral) from a marine sediment sequence recovered off the Orange River. The records reveal coherent patterns of variability that reflect changes in wind strength, precipitation over the river catchments, and upwelling of cold and nutrient-rich coastal waters off western South Africa. The wettest episode of the Holocene in the Winter Rainfall Zone (WRZ) of South Africa occurred during the "Little Ice Age" (700–100 yr BP). Wet phases were accompanied by strengthened coastal water upwellings, a decrease of Agulhas water leakage into the southern Atlantic, and a reduced dust incursion over Antarctica. A continuous aridification trend in the WRZ and a weakening of the southern Benguela Upwelling System (BUS) between 9000 and 5500 yr BP parallel with increase of dust deposition over Antarctica and an enhanced leakage of warm Agulhas water into the southeastern Atlantic. The temporal relationship between precipitation changes in the WRZ, the thermal state of the coastal surface water, and leakage of warm water in southern Atlantic, and variation of dust incursion over Antarctica suggests a causal link that most likely was related to latitudinal shifts of the Southern Hemisphere westerlies. Our results of the mid-Holocene time interval may serve as an analogue to a possible long-term consequence of the current and future southward shift of the westerlies that may result in a decline of rainfall over southwest Africa and a weakened upwelling with implication for phytoplankton productivity and fish stocks. Furthermore, warming of the coastal surface water as a result of warm Agulhas water incursion into the southern BUS may affect coastal fog formation that is critical as moisture source for the endemic flora of the Namaqualand.


2019 ◽  
Vol 8 (32) ◽  
Author(s):  
Johannes Cornelius Jacobus Fourie ◽  
Tomasz J. Sanko ◽  
Cornelius Carlos Bezuidenhout ◽  
Charlotte Mienie ◽  
Rasheed Adegbola Adeleke

Surface water systems in South Africa are experiencing a major decline in quality due to various anthropogenic factors. This poses a possible health risk for humans. Here, we present the draft genome sequences of three Clostridium perfringens isolates obtained from a fecally polluted river system in the North West province of South Africa.


2018 ◽  
Vol 6 (2) ◽  
pp. 12
Author(s):  
Dipitseng Manamela ◽  
Omotayo Awofolu

This article investigates the impact of anthropogenic activities on an important surface water from physico-chemical, chemical and microbial perspectives. The surface water, referred to as Blesbokspruit is in the West Rand District of South Africa. Potential impactors include wastewater treatment plant, mines, farmlands and informal settlements. Water samples were collected from nine purposively selected sampling points and analysed in 2014. The mean values of analysed variables across sampling sites and periods ranged from pH: 7.4-8.4; EC: 93.0 - 146.6 mS/m; TSS: 11.3 – 39.0 mg/L; TDS: 590.3 - 1020.3 mg/L; COD: 15.6- 34.8 mg/L. Those for anions varied from NO3-: 0.2- 2.1 (mg/L) N; PO43- : 0.4-0.9 mg/L and SO42-: 118.6 - 379.5 mg/L. The metallic variables ranged from As: 0.01-0.06 mg/L; Cd: 0.02-0.06 mg/L; Fe: 0.04-0.73 mg/L; Cu: 0.02 – 0.05 mg/L and Zn: 0.05 – 0.15 mg/L. The Faecal coliform varied from 15.9-16878.5 cfu/100 ml; Total coliform: 92.9-430294 cfu/100 ml and HPC from 4322.5-39776 cfu/1ml. Detection of toxic metals and pathogenic organisms above target safety limits indicate unsuitability of the water for domestic use with impact on the health of aquatic ecosystem. The study generally revealed the impact of anthropogenic activities on the surface water quality.


2016 ◽  
Vol 36 (1) ◽  
pp. 33 ◽  
Author(s):  
J. N. Edokpayi ◽  
J. A. Odiyo ◽  
T. A.M. Msagati ◽  
N. Potgieter

Sign in / Sign up

Export Citation Format

Share Document