Depositional age and provenance of high-grade paragneisses from the Mérida Andes, Venezuela: Implications for the Ediacaran–Cambrian tectonic setting of northwestern Gondwana

Lithos ◽  
2021 ◽  
Vol 404-405 ◽  
pp. 106436
Author(s):  
M. Daniela Tazzo-Rangel ◽  
Bodo Weber ◽  
Dirk Frei ◽  
Reneé González-Guzmán
2013 ◽  
Author(s):  
Juliane Belém ◽  
Antônio Carlos Pedrosa-Soares ◽  
Carlos Maurício Noce ◽  
Luiz Carlos Da Silva ◽  
Richard Armstrong ◽  
...  

Resultados de datações U-Pb (LA-ICP-MS) sobre zircões e análises litoquímicas de amostras de paragnaisse e xisto do Grupo Andrelândia, coletadas desde sua área-tipo até a região de alto grau metamórfico do sistema orogênico Araçuaí-Ribeira, evidenciam que esta extensa unidade estratigráfica inclui representantes de bacia precursora de margem continental passiva, representada pelo Grupo Andrelândia Inferior (paragnaisse de Madre de Deus, Seqüência Carrancas), com idade máxima em ca. 950 Ma e fontes sedimentares diversificadas, datadas do Toniano ao Neoarqueano; e de bacias orogênicas, representadas pela Unidade Santo Antônio do Grupo Andrelândia Superior e paragnaisses de alto grau metamórfico da região de Ubá-Carangola, com idade máxima em torno de 640 Ma e extrema concentração de áreas-fontes neoproterozóicas. As análises litoquímicas apontam para larga predominância de fontes sedimentares situadas em arcos magmáticos, mas a amostra que melhor indica a bacia precursora (o paragnaisse de Madre de Deus, Seqüência Carrancas) tem assinatura similar a depósitos de margem continental passiva. Amostras de paragnaisse migmatítico revelam a idade de ca. 565 Ma para o clímax metamórfico-anatético na zona de fronteira Araçuaí-Ribeira. Destaca-se que o Grupo Andrelândia Superior, na forma como é representado em mapas atuais, incluiria pelo menos duas bacias orogênicas, i.e., uma, na Faixa Brasília e, outra, no sistema Araçuaí-Ribeira.Palavras-chave: geocronologia U-Pb, litoquímica, Grupo Andrelândia ABSTRACT: PRECURSOR BASIN VERSUS OROGENIC BASINS: EXAMPLES FROM THE ANDRELÂNDIA GROUP BASED ON ZIRCON U-Pb (LA-ICP-MS) AND LITHOCHEMICAL ANALYSIS. Results from zircon U-Pb (LA-ICP-MS) and lithochemical analysis on samples from the Andrelândia Group, collected from its type-area to the high grade core of the Araçuaí-Ribeira orogenic system, suggest that this extensive stratigraphic unit includes a precursor passive margin basin, represented by the Lower Andrelândia Group (Madre de Deus paragneiss, Carrancas sequence), with maximum depositional age around 950 Ma and diversified sediment sources dated from the Tonian to Neoarchean; and orogenic basin(s), represented by the Santo Antônio unit of the Upper Andrelândia Group and high grade paragneisses of the Ubá-Carangola region, with a maximum depositional age around 640 Ma and provenance extremely restricted to Neoproterozoic sources. Lithochemical analysis point to a large predominance of sediment sources located in magmatic arcs, but the sample representing the precursor basin shows signature similar to passive margin deposits. High grade paragneisses reveal the age of ca. 565 Ma to the metamorphic-anatectic climax in the Araçuaí-Ribeira boundary zone. It is important to notice that the Upper Andrelândia Group, as represented in current maps, includes at least two orogenic basins, i.e., the older, to the west, in the Brasília belt, and the younger, to the east, in the Araçuaí-Ribeira system.Keywords: U-Pb geochronology, lithochemistry, Andrelândia Group.


2021 ◽  
Author(s):  
Deta Gasser ◽  
Tor Grenne ◽  
Bjørgunn Dalslåen ◽  
Trond Slagstad ◽  
David Roberts ◽  
...  

<p>U-Pb age spectra of detrital zircons are widely used to estimate maximum depositional ages (MDA) for sedimentary successions of various age. Different methods have been proposed for calculating an MDA. The most common are based on calculated ages of either the youngest single grain (YSG), the youngest grain cluster composed of three or more grains that overlap at 2σ (YGC 2σ), or the youngest graphical peak (YPP). Many of these methods produce MDAs consistent with biostratigraphic age or the radiometric age of volcanic horizons within the same unit; however, several studies have shown that MDA estimates based on detrital zircon can be younger than the true depositional age, particularly in active tectonic settings, indicating that the methods should be applied with care for successions where independent depositional age control is lacking.</p><p>In this contribution we present a compilation of 27 detrital zircon samples from Ordovician to Silurian strata from a part of the Trondheim Nappe Complex of the central Scandinavian Caledonides. The samples belong to six stratigraphically distinct units with independent age control from fossils, dated volcanic horizons or bracketing units of known age. These successions represent various marginal basins filled during the closing stages of the Iapetus Ocean in an overall active tectonic setting with detritus from both continental landmasses and Cambro-Ordovician island arcs. Shortly after deposition, the successions were folded and metamorphosed at up to greenschist facies during Taconian accretionary events and/or the Scandian continent-continent collision.</p><p>We calculated MDAs by the three methods YSG, YGC 2σ and YPP for all samples based on <sup>206</sup>Pb/<sup> 238</sup>U ages, applying a rigorous discordance filter of 5% (most studies use 10%), in order to use the most reliable analyses possible. Our analysis shows that the YSG MDA is up to 36 m.y. younger than the known depositional age for 17 of the 27 samples, with up to six individual grains giving too young age estimates in some samples. Hence, YSG MDA obviously does not provide a reliable MDA estimate. Of the YGC 2σ (weighted mean age) estimates, six are still significantly younger than known depositional age; and an additional seven are younger but overlap with the known depositional age when considering the maximum error on the YGC 2σ estimate. The only method which provides an MDA estimate within the age of known deposition or older for all samples is the YPP method.</p><p>Our results indicate that statistically robust estimates of MDA from detrital zircon data in such an active orogenic setting are provided only by the YPP method; both the YSG and the YGC 2σ methods provided unreliably young estimates even with a discordance filter of 5% (using a filter of only 10% makes the problem considerably worse). The spuriously young ages of up to six near-concordant grains in some samples is probably due to concealed lead loss, possibly caused by (fluid-assisted?) recrystallisation of zircon domains during regional greenschist-facies metamorphism shortly after deposition.</p>


2021 ◽  
pp. 14-21
Author(s):  
Elena Protsenko ◽  
Nadezhda Shakhurdina

The lateral heterogeneity of the Vilyui-Markha fault zone was determined, the central and western subzones were identified. The high-grade diamondiferous Mir and Nakyn kimberlite fields are confined to the central subzone. The low-grade diamondiferous Syuldyukar kimberlite field is confined to the western subzone of the VilyuiMarkha zone. The analysis of the fault network density in the research area was carried out. It was found that the fault network density increases within the subzones, which characterizes them as increased permeability areas favorable for kimberlite melts uprising. This fact can be another tectonic criterion for setting up diamond prospecting operations.


1996 ◽  
Vol 133 (3) ◽  
pp. 311-323 ◽  
Author(s):  
A. Kröner ◽  
I. Braun ◽  
P. Jaeckel

AbstractWe report U—Pb and207Pb/206Pb zircon ages for a granulite facies gneiss assemblage exposed in a large quarry at Ihosy, southern Madagascar. The granulites are derived from pelitic to arkosic sediments and attained equilibrium conditions at 650–700°C and 4–5 kbar. HigherP—Tconditions of 750–800°C and 6 kbar in the presence of low water activities have led to dehydration melting processes. The formation of granitic melts, which (partly) moved away from their source region, intruded into upper parts of the metapelitic gneisses as small granitic veins and left behind granulitic garnet-cordierite-quartz bearing rocks. Detrital zircons in a sample of metapelite and a sample of quartzofeldspathic gneiss yielded ages between ˜720 and ˜1855 Ma, suggesting a chronologically heterogeneous source region and a depositional age of less than ˜720 Ma for these rocks. High-grade metamorphism and anatexis are documented by zircon ages between 526 ±34 and 557 ±2 Ma with a mean age of about 550 Ma. The broad lithologies, metamorphic grades and ages recorded in the Ihosy rocks are similar to those in the Wanni Complex of northwestern Sri Lanka and in high-grade assemblages of southernmost India and support the contention that all these terrains were part of the Mozambique belt which formed as a result of collision of East and West Gondwana in latest Precambrian time.


2021 ◽  
Vol 62 (5) ◽  
pp. 525-546
Author(s):  
A.I. Slabunov ◽  
V.V. Balagansky ◽  
A.A. Shchipansky

Abstract —The Belomorian Province (BP) of the Fennoscandian Shield is a high-grade belt composed of Meso- to Neoarchean tonalite– trondhjemite–granodiorite (TTG) gneisses with subordinate supracrustal complexes. The Belomorian crust is underlined by a thick mantle keel, a structural element typical of Archean cratons. Belomorian rocks were metamorphosed under conditions of mainly high-pressure amphibolite to granulite facies in both Archean and Paleoproterozoic times. The TTG gneisses contain numerous blocks of almost completely retrogressed eclogite (eclogite-1). This paragenetic association of eclogite-1 and gneisses can be classified as an Archean eclogite–TTG gneiss mélange, a component of the Belomorian continental crust produced by subductional, accretionary, and collisional processes of the Belomorian collisional orogeny 2.9–2.66 Ga. The Paleoproterozoic history of the BP comprises of two prominent tectonic periods: (i) early Paleoproterozoic (~2.5–2.4 Ga), related to a superplume, and (ii) late Paleoproterozoic (2.0–1.85 Ga), resulted from crustal reworking during the Lapland–Kola collisional orogeny that produced strong penetrative metamorphic and local deformational overprint. The Paleoproterozoic highest-grade metamorphic overprint is represented by patches of eclogites (eclogite-2) in Paleoproterozoic mafic dikes and eclogite-1. Field relations between eclogite-1 and eclogite-2 are described in the Gridino area of the western coast of the White Sea. So, the BP is a high-grade polymetamorphic belt formed by a superposition of the Neoarchean Belomorian and Paleoproterozoic Lapland–Kola orogenies, whose characteristic features are eclogites produced by subduction and collision.


Sign in / Sign up

Export Citation Format

Share Document