Diamond growth and characteristics in the metal-silicate-H2O-C system at HPHT condition

Lithos ◽  
2021 ◽  
pp. 106470
Author(s):  
Zhiyun Lu ◽  
Hongyu Zhao ◽  
Yongkui Wang ◽  
Shuai Fang ◽  
Zhenghao Cai ◽  
...  
Author(s):  
J C Walmsley ◽  
A R Lang

Interest in the defects and impurities in natural diamond, which are found in even the most perfect stone, is driven by the fact that diamond growth occurs at a depth of over 120Km. They display characteristics associated with their origin and their journey through the mantle to the surface of the Earth. An optical classification scheme for diamond exists based largely on the presence and segregation of nitrogen. For example type Ia, which includes 98% of all natural diamonds, contain nitrogen aggregated into small non-paramagnetic clusters and usually contain sub-micrometre platelet defects on {100} planes. Numerous transmission electron microscope (TEM) studies of these platelets and associated features have been made e.g. . Some diamonds, however, contain imperfections and impurities that place them outside this main classification scheme. Two such types are described.First, coated-diamonds which possess gem quality cores enclosed by a rind that is rich in submicrometre sized mineral inclusions. The transition from core to coat is quite sharp indicating a sudden change in growth conditions, Figure 1. As part of a TEM study of the inclusions apatite has been identified as a major constituent of the impurity present in many inclusion cavities, Figure 2.


1998 ◽  
Vol 08 (PR7) ◽  
pp. Pr7-391-Pr7-399 ◽  
Author(s):  
S. Farhat ◽  
C. Findeling ◽  
F. Silva ◽  
K. Hassouni ◽  
A. Gicquel

2017 ◽  
Author(s):  
Rebecca Stone ◽  
◽  
Melissa Strawson ◽  
Robert Luth
Keyword(s):  

Processes ◽  
2020 ◽  
Vol 8 (6) ◽  
pp. 666 ◽  
Author(s):  
Nikolay Ivanovich Polushin ◽  
Alexander Ivanovich Laptev ◽  
Boris Vladimirovich Spitsyn ◽  
Alexander Evgenievich Alexenko ◽  
Alexander Mihailovich Polyansky ◽  
...  

Boron-doped diamond is a promising semiconductor material that can be used as a sensor and in power electronics. Currently, researchers have obtained thin boron-doped diamond layers due to low film growth rates (2–10 μm/h), with polycrystalline diamond growth on the front and edge planes of thicker crystals, inhomogeneous properties in the growing crystal’s volume, and the presence of different structural defects. One way to reduce structural imperfection is the specification of optimal synthesis conditions, as well as surface etching, to remove diamond polycrystals. Etching can be carried out using various gas compositions, but this operation is conducted with the interruption of the diamond deposition process; therefore, inhomogeneity in the diamond structure appears. The solution to this problem is etching in the process of diamond deposition. To realize this in the present work, we used triethyl borate as a boron-containing substance in the process of boron-doped diamond chemical vapor deposition. Due to the oxygen atoms in the triethyl borate molecule, it became possible to carry out an experiment on simultaneous boron-doped diamond deposition and growing surface etching without the requirement of process interruption for other operations. As a result of the experiments, we obtain highly boron-doped monocrystalline diamond layers with a thickness of about 8 μm and a boron content of 2.9%. Defects in the form of diamond polycrystals were not detected on the surface and around the periphery of the plate.


Materials ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 426
Author(s):  
Byeong-Kwan Song ◽  
Hwan-Young Kim ◽  
Kun-Su Kim ◽  
Jeong-Woo Yang ◽  
Nong-Moon Hwang

Although the growth rate of diamond increased with increasing methane concentration at the filament temperature of 2100 °C during a hot filament chemical vapor deposition (HFCVD), it decreased with increasing methane concentration from 1% CH4 –99% H2 to 3% CH4 –97% H2 at 1900 °C. We investigated this unusual dependence of the growth rate on the methane concentration, which might give insight into the growth mechanism of a diamond. One possibility would be that the high methane concentration increases the non-diamond phase, which is then etched faster by atomic hydrogen, resulting in a decrease in the growth rate with increasing methane concentration. At 3% CH4 –97% H2, the graphite was coated on the hot filament both at 1900 °C and 2100 °C. The graphite coating on the filament decreased the number of electrons emitted from the hot filament. The electron emission at 3% CH4 –97% H2 was 13 times less than that at 1% CH4 –99% H2 at the filament temperature of 1900 °C. The lower number of electrons at 3% CH4 –97% H2 was attributed to the formation of the non-diamond phase, which etched faster than diamond, resulting in a lower growth rate.


Author(s):  
Yanick Ricard ◽  
Stéphane Labrosse ◽  
Hidenori Terasaki ◽  
David Bercovici

CrystEngComm ◽  
2020 ◽  
Vol 22 (47) ◽  
pp. 8266-8273
Author(s):  
Chunxiao Wang ◽  
Hong-an Ma ◽  
Liangchao Chen ◽  
Shuai Fang ◽  
Jian Wang ◽  
...  

FEM was used to explain the mechanism of diamond growth defects and methods were proposed to eliminate the growth defects.


Lithos ◽  
2021 ◽  
Vol 388-389 ◽  
pp. 106058
Author(s):  
Michael U. Gress ◽  
D. Graham Pearson ◽  
Ingrid L. Chinn ◽  
Emilie Thomassot ◽  
Gareth R. Davies
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document