Use of non-Saccharomyces yeast strains coupled with ultrasound treatment as a novel technique to accelerate ageing on lees of red wines and its repercussion in sensorial parameters

LWT ◽  
2015 ◽  
Vol 64 (2) ◽  
pp. 1255-1262 ◽  
Author(s):  
Priyanka Kulkarni ◽  
Iris Loira ◽  
Antonio Morata ◽  
Wendu Tesfaye ◽  
M. Carmen González ◽  
...  
2020 ◽  
Vol 8 (3) ◽  
pp. 323 ◽  
Author(s):  
Lanlan Hu ◽  
Rui Liu ◽  
Xiaohong Wang ◽  
Xiuyan Zhang

Co-fermentation of selected non-Saccharomyces yeast strain with Saccharomyces cerevisiae is regarded as a promising approach to improve the sensory quality of fruit wine. To evaluate the effects of co-fermentations between the selected non-Saccharomyces yeast strains (Hanseniaspora opuntiae, Hanseniaspora uvarum and Torulaspora delbrueckii) and S. cerevisiae on the sensory quality of citrus wine, the fermentation processes, the chemical compositions, and the sensory evaluations of citrus wines were analyzed. Compared with those of S. cerevisiae fermentation, co-fermentations produced high sensory qualities, and S. cerevisiae/H. opuntiae co-fermentation had the best sensory quality followed by Sc-Hu and Sc-Td co-fermentations. Additionally, all the co-fermentations had a lower amount of ethanol and total acidity, higher pH value, and higher content of volatile aroma compounds, especially the content of higher alcohol and ester compounds, than those of S. cerevisiae fermentation. Therefore, co-fermentations of the non-Saccharomyces yeast strains and S. cerevisiae could be employed to improve the sensory quality of citrus wines. These results would provide not only methods to improve the sensory quality of citrus wine, but also a valuable reference for the selection of non-Saccharomyces yeast strains for fruit wine fermentation.


2014 ◽  
Vol 181 ◽  
pp. 85-91 ◽  
Author(s):  
Manuel Quirós ◽  
Virginia Rojas ◽  
Ramon Gonzalez ◽  
Pilar Morales

OENO One ◽  
2002 ◽  
Vol 36 (2) ◽  
pp. 49 ◽  
Author(s):  
Caroline Fornairon-Bonnefond ◽  
Carole Camarasa ◽  
Michel Moutounet ◽  
Jean-Michel Salmon

<p style="text-align: justify;">In enology, «grands crus» white wines are traditionally aged by the «sur lies» method, which consists of keeping the aging wine in contact with the lees (yeasts and organic residues). The lees can come either from the first or second fermentation and can be used for both white and red wines. This practice is still in the experimental stage. We reviewed scientific studies carried out on wine lees to determine the current situation in enology. We also provide some technological information relevant to such a practice.</p><p style="text-align: justify;">The first part of this paper provides a clear definition of wine lees from a legal and technological point of view. The second part describes the mechanisms of autolysis and focuses on each class of autolysis product. Many scientific studies have discussed the phenomenon of yeast autolysis during wine ageing. Most of these studies simply identified the yeast macromolecules released into the wine during autolysis. However, the experimental methods used vary and it is difficult to extrapolate most of results to the process of wine ageing on lees. Only a few studies have dealt with the physicochemical properties of lees during autolysis, especially concerning oxygen, polyphenols and other wine compounds. We then summarize the recent data obtained on these topics. Finally, we discuss the technical effects of aging wine on lees.</p>


OENO One ◽  
2014 ◽  
Vol 48 (1) ◽  
pp. 63 ◽  
Author(s):  
Pilar Blanco ◽  
José Manuel Mirás-Avalos ◽  
E. Pereira ◽  
Daniel Fornos ◽  
Ignacio Orriols

<p style="text-align: justify;"><strong>Aim</strong>: To evaluate the influence of native <em>Saccharomyces cerevisiae </em>strains in red wines from <em>Vitis vinifera</em> cv. Mencía: fermentative ability, inoculation success, and sensory and chemical characteristics of wines.</p><p style="text-align: justify;"><strong>Methods and results</strong>: Indigenous yeast strains (Sc5, Sc11, Sc21 and Sc24) were inoculated in grape musts and their inoculation success was followed by mtDNA-RFLP (mitochondrial DNA-restriction fragment length polymorphism) at different stages of fermentation. The results showed that the added yeast strains fermented in co-dominance with a resident strain, which also controlled the spontaneous processes. Chemical analysis of basic wine parameters using official methodologies showed significant differences among wines for alcohol degree and volatile acidity. Fermentative aroma compounds were determined by gas chromatography. Wines made with different yeast strains varied in higher alcohols, ethyl ester, 2-phenylethanol, ethyl lactate and acetoin content. Sensory analysis indicated that wine from strain Sc24 had the best overall score, whereas that from strain Sc11 achieved the highest scores for colour intensity, structure and fruity character.</p><p style="text-align: justify;"><strong>Conclusions</strong>: The application of selected <em>S. cerevisiae</em> strains allowed us to obtain differentiated wines from both the chemical and sensory points of view.</p><p style="text-align: justify;"><strong>Significance and impact of the study</strong>: The results confirmed that indigenous yeasts can be used to elaborate singular wines and may constitute a useful tool to diversify Mencía wines.</p>


Fermentation ◽  
2019 ◽  
Vol 5 (2) ◽  
pp. 51 ◽  
Author(s):  
Friedrich Felix Jacob ◽  
Lisa Striegel ◽  
Michael Rychlik ◽  
Mathias Hutzler ◽  
Frank-Jürgen Methner

Spent yeast from beer manufacturing is a cost-effective and nutrient-rich starting material for the production of yeast extracts. In this study, it is shown how physiologically important ingredients in a yeast extract are influenced by the composition of the spent yeast from the brewing process. In pilot fermentations, the time of cropping (primary fermentation, lagering) of the spent yeast and the original gravity (12 ˚P, 16 ˚P, 20 ˚P) of the fermentation medium was varied, and four alternative non-Saccharomyces yeast strains were compared with two commercial Saccharomyces yeast strains. In addition, spent yeast was contaminated with the beer spoiler Lactobacillus brevis. The general nutrient composition (total protein, fat, ash) was investigated as well as the proteinogenic amino acid spectrum, the various folate vitamers (5-CH3-H4folate, 5-CHO-H4folate, 10-CHO-PteGlu, H4folate, PteGlu) and the biological activity (reduction, antioxidative potential) of a mechanically (ultrasonic sonotrode) and an autolytically produced yeast extract. All the investigated ingredients from the yeast extract were influenced by the composition of the spent yeast from the brewing process. The biodiversity of the spent yeast from the brewing process therefore directly affects the content of physiologically valuable ingredients of a yeast extract and should be taken into consideration in industrial manufacturing processes.


Foods ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1452
Author(s):  
Qian Ge ◽  
Chunfeng Guo ◽  
Jing Zhang ◽  
Yue Yan ◽  
Danqing Zhao ◽  
...  

In this study, Vidal grape must was fermented using commercial Saccharomyces cerevisiae F33 in pure culture as a control and in mixed culture with five indigenous non-Saccharomyces yeast strains (Hanseniaspora uvarum QTX22, Saccharomycopsis crataegensis YC30, Pichia kluyveri HSP14, Metschnikowia pulcherrima YC12, and Rhodosporidiobolus lusitaniae QTX15) through simultaneous fermentation in a 1:1 ratio. Simultaneous fermentation inhibited the growth of S. cerevisiae F33 and delayed the time to reach the maximum biomass. Compared with pure fermentation, the contents of polyphenols, acetic esters, ethyl esters, other esters, and terpenes were increased by R. lusitaniae QTX15, S. crataegensis YC30, and P. kluyveri HSP14 through simultaneous fermentation. S. crataegensis YC30 produced the highest total aroma activity and the most abundant aroma substances of all the wine samples. The odor activity values of 1 C13-norisoprenoid, 3 terpenes, 6 acetic esters, and 10 ethyl esters improved significantly, and three lactones (δ-decalactone, γ-nonalactone, and γ-decalactone) related to coconut and creamy flavor were only found in this wine. Moreover, this sample showed obvious “floral” and “fruity” note odor due to having the highest amount of ethyl ester aromatic substances and cinnamene, linalool, citronellol, β-damascenone, isoamyl ethanoate, benzylcarbinyl acetate, isobutyl acetate, etc. We suggest that simultaneous fermentation of S. crataegensis YC30 with S. cerevisiae might represent a novel strategy for the future production of Vidal icewine.


Author(s):  
Yvonne Methner ◽  
Mathias Hutzler ◽  
Martin Zarnkow ◽  
Alexandra Prowald ◽  
Frank Endres ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document