Effect of chestnut flour supplementation on physico-chemical properties and oxidative stability of gluten-free biscuits during storage

LWT ◽  
2018 ◽  
Vol 98 ◽  
pp. 451-457 ◽  
Author(s):  
Maria Paciulli ◽  
Massimiliano Rinaldi ◽  
Antonella Cavazza ◽  
Tommaso Ganino ◽  
Margherita Rodolfi ◽  
...  
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Monika Wójcik ◽  
Renata Różyło ◽  
Regine Schönlechner ◽  
Mary Violet Berger

AbstractThe study aimed to determine the effect of pea protein powder on the pasting behavior and physico-chemical properties including the composition of amino and fatty acids of gluten-free bread with low-carbohydrate content. The control bread recipe was based on buckwheat flour (50 g) and flaxseed flour (50 g) as main flours. Additionally, the improving additives for this control bread such as psyllium husk (4 g), potato fiber (2 g), and guar gum (2 g) were used. The mixture of base flour was supplemented with the addition of pea protein powder (PPP) in the amount ranging from 5 to 25%. The results of Visco analyzes measured by RVA apparatus showed that the addition of 10% PPP to the control bread did not significantly differentiate peak viscosity and pasting temperature which was at the level 3115 cP and 3149 cP and 50 °C, respectively. Supplementation of low-carbohydrate bread with 10% of PPP was acceptable and significantly increased the content of all analyzed amino acids, as well as the amount of α-linolenic acid concerning the control bread. The lowest value of chemical score was observed for leucine. The EAAI (essential amino acid index) value increased from 34 to 40 when the optimal protein supplement was added. The developed gluten-free, low-carbohydrate, and high protein bread was characterized by contents of carbohydrate of 16.9%, protein of 17.1%, fiber of 13.7%, fat of 3.3% and its calorific value was 194 kcal/100 g.


Foods ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 5
Author(s):  
Paola Littardi ◽  
Massimiliano Rinaldi ◽  
Maria Grimaldi ◽  
Antonella Cavazza ◽  
Emma Chiavaro

Green coffee parchment (GCP) is becoming interesting, due to the diffusion of wet processing in which coffee parchment is collected separately; it is one of the less studied coffee by-products, but it is reported to be rich in phenolic compounds and dietary fiber. The addition of GCP (355–500 μm) at 2 % to gluten-free breads was investigated in terms of physical properties (volume, moisture content, water activity, crumb grain, texture, and color), total antioxidant capacity (TAC) and total phenol content during three days of storage. Moreover, the effects of GCP on sensorial characteristics, 5-hydroxymethylfurfural (HMF), and oxidative stability was evaluated. From the sensorial analysis, bread with 2% addition resulted in being acceptable for consumers with no significant differences from the control, while 4% of GCP was discarded by consumers, as it resulted in being too bitter. Moreover, GCP at 2% addition did not modify volume, moisture content, and water activity. On the contrary, GCP deeply affected the color with a darker aspect that was appreciated by consumers. Regarding texture, 2% of GCP did not affect hardness, cohesiveness, and staling process during storage. Interestingly, 2% of GCP significantly improved the TAC and oxidative stability of the bread; in accordance with these results, 2% of GCP reduced the HMF content, thanks to its antioxidant compounds.


LWT ◽  
2013 ◽  
Vol 53 (1) ◽  
pp. 233-239 ◽  
Author(s):  
Chiara Dall'Asta ◽  
Martina Cirlini ◽  
Elisa Morini ◽  
Massimiliano Rinaldi ◽  
Tommaso Ganino ◽  
...  

Foods ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 2497
Author(s):  
Zikhona Mandela ◽  
Elodie Arnaud ◽  
Louwrens C. Hoffman

The physico-chemical properties (proximate, salt content, water activity (aw), pH) and lipid oxidation of droëwors (dried salted/spiced meat sausages) produced with zebra meat and different sheep fat levels (10, 15, and 20% by weight) measured at day 0 (before drying), day 2 (after drying at 30 °C and 40% relative humidity), and over a 90 day storage (day 17, 32, 47, 62, 77, and 92) under vacuum at 25 °C were investigated. The use of lower fat levels (10 and 15%) in the formulation resulted in higher weight loss during drying and droëwors with higher protein, ash, and salt content and lower aw and pH compared to the droëwors made with 20% fat. The pH increased (p < 0.001) during storage for all the fat levels, while the moisture content and the aw were stable as expected. TBARS values were the highest in droëwors made with 20% of fat after drying (day 2), but droëwors made with 10% of fat reached similar maximal values on day 17. Formulations containing 15% sheep fat displayed the lowest TBARS values after drying and along storage, and thus had the best characteristics in relation to oxidative stability.


2016 ◽  
Vol 243 (5) ◽  
pp. 867-877 ◽  
Author(s):  
Eleonora Carini ◽  
Elena Curti ◽  
Fabio Fattori ◽  
Maria Paciulli ◽  
Elena Vittadini

2020 ◽  
Vol 69 (4) ◽  
pp. 307-315
Author(s):  
Kashif Ghafoor ◽  
Mehmet Musa Özcan ◽  
Fahad Al Juhaimi ◽  
Elfadıl E Babiker ◽  
Isam A. Mohamed Ahmed

Biomolecules ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 294
Author(s):  
Ivan Savic ◽  
Ivana Savic Gajic ◽  
Dragoljub Gajic

Storage of a great amount of plum kernel waste becomes a challenge for food industry. In this work, the plum seed was used as a source of fixed oil that can be an ingredient of commercial products. Soxhlet extraction was carried out using the different solvents, such as n-hexane, n-heptane, ethyl acetate, acetone, or chloroform:methanol mixture (2:1 v/v). The highest yield of oil (about 30%) was obtained using n-heptane and n-hexane, while the lowest yield was obtained using ethyl acetate. The analysis of physico-chemical parameters indicated that all samples of plum seed oil have an exceptional quality. Schaal oven test indicated that the fixed oil of plum seed exhibited satisfactory oxidative stability at moderate storage temperatures (up to 65 °C). The composition of phenolic compounds in the oil samples was determined using HPLC method. The most abundant compound of seven identified and quantified phenolic compounds was vanillic acid. The highest content of β-carotene (1.67 mg 100 g−1 fixed oil) spectrophotometrically determined was in the oil extracted with n-hexane. The lowest content of β-carotene (1.26 mg 100 g−1 fixed oil) was determined in the oil extracted with a mixture of chloroform:methanol (2:1 v/v). This oil had the highest antioxidant activity (IC50 value of 4.35 mg mL−1) compared to other oil samples. The antioxidant activity was probably caused by the presence of phenolic compounds. The investigated physico-chemical properties demonstrated that the plum seed oil has a potential for application in the food, cosmetics, and pharmaceutical industry.


Sign in / Sign up

Export Citation Format

Share Document