Shelf life of extra virgin olive oil manufactured with combined microwaves and megasonic waves at industrial scale

LWT ◽  
2021 ◽  
pp. 111345
Author(s):  
Miguel Amarillo ◽  
Adriana Gámbaro ◽  
Ana Claudia Ellis ◽  
Bruno Irigaray ◽  
Jimena Lázaro ◽  
...  
Antioxidants ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 368
Author(s):  
Paula Garcia-Oliveira ◽  
Cecilia Jimenez-Lopez ◽  
Catarina Lourenço-Lopes ◽  
Franklin Chamorro ◽  
Antia Gonzalez Pereira ◽  
...  

Extra virgin olive oil (EVOO) is one of the most distinctive ingredients of the Mediterranean diet. There are many properties related to this golden ingredient, from supreme organoleptic characteristics to benefits for human health. EVOO contains in its composition molecules capable of exerting bioactivities such as cardio protection, antioxidant, anti-inflammatory, antidiabetic, and anticancer activity, among others, mainly caused by unsaturated fatty acids and certain minor compounds such as tocopherols or phenolic compounds. EVOO is considered the highest quality vegetable oil, which also implies a high sensory quality. The organoleptic properties related to the flavor of this valued product are also due to the presence of a series of compounds in its composition, mainly some carbonyl compounds found in the volatile fraction, although some minor compounds such as phenolic compounds also contribute. However, these properties are greatly affected by the incidence of certain factors, both intrinsic, such as the olive variety, and extrinsic, such as the growing conditions, so that each EVOO has a particular flavor. Furthermore, these flavors are susceptible to change under the influence of other factors throughout the oil's shelf-life, such as oxidation or temperature. This work offers a description of some of the most remarkable compounds responsible for EVOO’s unique flavor and aroma, the factors affecting them, the mechanism that lead to the degradation of EVOO, and how flavors can be altered during the shelf-life of the oil, as well as several strategies suggested for the preservation of this flavor, on which the quality of the product also depends.


2016 ◽  
Vol 2016 ◽  
pp. 1-7 ◽  
Author(s):  
Claudia Guillaume ◽  
Leandro Ravetti

Extra virgin olive oil shelf-life could be defined as the length of time under normal storage conditions within which no off-flavours or defects are developed and quality parameters such as peroxide value and specific absorbance are retained within accepted limits for this commercial category. Prediction of shelf-life is a desirable goal in the food industry. Even when extra virgin olive oil shelf-life should be one of the most important quality markers for extra virgin olive oil, it is not recognised as a legal parameter in most regulations and standards around the world. The proposed empirical formula to be evaluated in the present study is based on common quality tests with known and predictable result changes over time and influenced by different aspects of extra virgin olive oil with a meaningful influence over its shelf-life. The basic quality tests considered in the formula are Rancimat® or induction time (IND); 1,2-diacylglycerols (DAGs); pyropheophytin a (PPP); and free fatty acids (FFA). This paper reports research into the actual shelf-life of commercially packaged extra virgin olive oils versus the predicted shelf-life of those oils determined by analysing the expected deterioration curves for the three basic quality tests detailed above. Based on the proposed model, shelf-life is predicted by choosing the lowest predicted shelf-life of any of those three tests.


Food Control ◽  
2013 ◽  
Vol 30 (2) ◽  
pp. 606-615 ◽  
Author(s):  
Jesus Lozano-Sánchez ◽  
Alessandra Bendini ◽  
Rosa Quirantes-Piné ◽  
Lorenzo Cerretani ◽  
Antonio Segura-Carretero ◽  
...  

Antioxidants ◽  
2019 ◽  
Vol 8 (9) ◽  
pp. 331 ◽  
Author(s):  
Antonella Smeriglio ◽  
Giovanni Toscano ◽  
Marcella Denaro ◽  
Clara De Francesco ◽  
Simona Agozzino ◽  
...  

The functional foods field has recently evolved due to new research being carried out in the food area and greater regulations; these factors have contributed to the creation of health claims, and to the increasing attention that consumers give to health-promoting food products. The aim of this research was to improve the shelf-life of a typical functional food of the Mediterranean diet, the Extra Virgin Olive Oil (EVOO). We focused our attention on the standardization and validation of a production process, starting from the cultivation and harvesting of the olives, which would guarantee a product of quality in terms of bioactive compound content. Furthermore, a methodology/procedure to preserve them in the best way over a long period of time, in order to guarantee the consumer receives a product that retains its functional and organoleptic native properties, was evaluated. The monitoring of biological cultivations, harvesting, milling process, and storage, as well as careful quality control of the analytical parameters (e.g., contents of polyphenols, α-tocopherol, fatty acids, acidity, peroxides, dienes, trienes, ΔK, and antioxidant power) showed that, under the same conditions, a nitrogen headspace is a discriminating factor for the maintenance of the functional properties of EVOO.


2020 ◽  
Vol 23 ◽  
pp. 100433 ◽  
Author(s):  
Basheer M. Iqdiam ◽  
Bruce A Welt ◽  
Renee Goodrich-Schneider ◽  
Charles A Sims ◽  
George L. Baker ◽  
...  

Foods ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 295 ◽  
Author(s):  
Lanfranco Conte ◽  
Andrea Milani ◽  
Sonia Calligaris ◽  
Pierangela Rovellini ◽  
Paolo Lucci ◽  
...  

Producers have to guarantee the extra virgin olive oil (EVOO) quality characteristics reported in the Regulation (CEE) 2568/91 throughout the product shelf-life (SL). Unfortunately, due to the development of oxidative reactions, some quality indices change during storage leading to a progressive deterioration of EVOO quality. To avoid the risk of product downgrading in the virgin oil category, the development of effective shelf-life prediction models is extremely important for the olive oil industry. In this research, the accelerated shelf-life testing (ASLT) protocol was applied to evaluate the temperature dependence of selected oxidation indexes as well as to develop a shelf-life predictive model. The evolution of conventional (peroxide value, K232, K270, polyphenols, tocopherols and hexanal) and unconventional parameters (conjugated trienes and pyropheophytin a) was monitored in bottled EVOO stored in the dark at increasing temperature (25, 40, 50 and 60 °C). Accordingly, for well-packed products with reduced oxygen in headspace, the best shelf-life index allowing the ability to predict EVOO SL turned out to be K270. In addition, pyropheophytin a (%) has been shown to be more sensitive to temperature changes than the secondary oxidation indices, thus suggesting its use as a freshness indicator for storage temperatures higher than 25 °C.


2010 ◽  
Vol 23 (7) ◽  
pp. 383-391 ◽  
Author(s):  
Alessandro Parenti ◽  
Piernicola Masella ◽  
Paolo Spugnoli ◽  
Laura Mazzanti ◽  
Marzia Migliorini

Sign in / Sign up

Export Citation Format

Share Document