Pore structure characteristics and its effect on shale gas adsorption and desorption behavior

2019 ◽  
Vol 100 ◽  
pp. 165-178 ◽  
Author(s):  
Xiaowei Zheng ◽  
Boqiao Zhang ◽  
Hamed Sanei ◽  
Hanyong Bao ◽  
Zhiyong Meng ◽  
...  
2019 ◽  
Vol 7 (2) ◽  
pp. T547-T563 ◽  
Author(s):  
Jiyuan Wang ◽  
Shaobin Guo

To systematically study the whole-aperture pore-structure characteristics of the marine-continental transitional shale facies in the Upper Palaeozoic Taiyuan and Shanxi Formations of the Qinshui Basin, we have collected a total of 11 samples for high-pressure mercury intrusion, low-pressure gas adsorption ([Formula: see text] and [Formula: see text]), nuclear magnetic resonance (NMR), and field-emission scanning electron microscopy with argon-ion polishing experiments to determine the pore morphology and distribution characteristics of shale samples in detail and to perform quantitative analyses. Then compared the pore-development characteristics of the Taiyuan Formation samples with those of the Shanxi Formation to determine which is preferable. The experimental results indicate that the shale samples of the Qinshui Basin mainly develop three types of pores: organic pores, intergranular pores, and microfractures. High-pressure mercury intrusion and gas-adsorption experiments indicate that the pore-size distributions exhibit multiple peaks. The samples contained varying proportions of macropores, mesopores, and micropores, among which the former two are dominant, accounting for approximately 85% of the total pore volume, whereas micropores account for only 15%. However, mesopores and micropores dominate the specific surface area; between them, the micropores are much more prevalent, accounting for more than 99% of the total specific surface area. Macropores contribute less than 1% of the specific surface area and therefore can be neglected. The pore morphology resembles the slit type parallel platy pores with a ballpoint pen structure. The NMR [Formula: see text] spectra have multiple-peak values. In addition, the large difference between the curved areas before and after centrifugation indicates that the samples contain a large proportion of mesopores and macropores, which is consistent with the results presented above. The results demonstrate that the development of pores in the Taiyuan Formation is better than that in the Shanxi Formation.


2021 ◽  
pp. 014459872110343
Author(s):  
Yuan Yuan ◽  
Feng Cai ◽  
Lingling Yang

The presence of gas content in medium- and high-rank coal poses a threat to safety production. Safe gas extraction is based on a correct understanding of the pore structure of coal. This work investigates the pore structure characteristics of medium- and high-rank coal and evaluates their fractal structure. The coal samples were collected from Huainan Coalfield and Qinshui Coalfield, and divided into four types, according to the difference in surface bright characteristics. Through adopting low-temperature liquid nitrogen adsorption and desorption, and applying Kelvin equation, we obtain the main pore structure types and main pore size distribution characteristics of various coal briquettes. Electron microscope scanning structure and scientific analysis were used for special adsorption and desorption curves and hysteresis to find the dynamic reason. According to the different adsorption mechanism and Frenkel–Halsey–Hill-based model, with P/ P0 = 0.4 as the dividing point of fractal dimension analysis, the pore structure of coal samples is classified into five grades. The fractal evaluation results are consistent with the results of curve analysis and pore size analysis.


Fuel ◽  
2013 ◽  
Vol 103 ◽  
pp. 606-616 ◽  
Author(s):  
C.R. Clarkson ◽  
N. Solano ◽  
R.M. Bustin ◽  
A.M.M. Bustin ◽  
G.R.L. Chalmers ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document