The whole-aperture pore-structure characteristics of marine-continental transitional shale facies of the Taiyuan and Shanxi Formations in the Qinshui Basin, North China

2019 ◽  
Vol 7 (2) ◽  
pp. T547-T563 ◽  
Author(s):  
Jiyuan Wang ◽  
Shaobin Guo

To systematically study the whole-aperture pore-structure characteristics of the marine-continental transitional shale facies in the Upper Palaeozoic Taiyuan and Shanxi Formations of the Qinshui Basin, we have collected a total of 11 samples for high-pressure mercury intrusion, low-pressure gas adsorption ([Formula: see text] and [Formula: see text]), nuclear magnetic resonance (NMR), and field-emission scanning electron microscopy with argon-ion polishing experiments to determine the pore morphology and distribution characteristics of shale samples in detail and to perform quantitative analyses. Then compared the pore-development characteristics of the Taiyuan Formation samples with those of the Shanxi Formation to determine which is preferable. The experimental results indicate that the shale samples of the Qinshui Basin mainly develop three types of pores: organic pores, intergranular pores, and microfractures. High-pressure mercury intrusion and gas-adsorption experiments indicate that the pore-size distributions exhibit multiple peaks. The samples contained varying proportions of macropores, mesopores, and micropores, among which the former two are dominant, accounting for approximately 85% of the total pore volume, whereas micropores account for only 15%. However, mesopores and micropores dominate the specific surface area; between them, the micropores are much more prevalent, accounting for more than 99% of the total specific surface area. Macropores contribute less than 1% of the specific surface area and therefore can be neglected. The pore morphology resembles the slit type parallel platy pores with a ballpoint pen structure. The NMR [Formula: see text] spectra have multiple-peak values. In addition, the large difference between the curved areas before and after centrifugation indicates that the samples contain a large proportion of mesopores and macropores, which is consistent with the results presented above. The results demonstrate that the development of pores in the Taiyuan Formation is better than that in the Shanxi Formation.

2020 ◽  
Vol 38 (5) ◽  
pp. 1484-1514 ◽  
Author(s):  
Rongfang Qin ◽  
Anmin Wang ◽  
Daiyong Cao ◽  
Yingchun Wei ◽  
Liqi Ding ◽  
...  

The physical properties of thick coal seams show strong vertical heterogeneity; thus, an accurate characterization of their pore structure is essential for coalbed methane (CBM) exploration and production. A total of 18 coal samples, collected from a thick coal seam in the Yili Basin of NW China, were tested by a series of laboratory experiments to investigate the peat mire evolution and pore structure characteristics. The results show that the No. 4 coal seam has undergone multiple stages of evolution in the peatification stage, and was divided into four water-transgression/water-regression cycles according to the regular cyclic changes of the vitrinite/inertinite ratio, structure preservation index, gelification index, vegetation index, trace element ratios, and stable carbon isotopes of organic matter. The changes of pore structure characteristics with the changes of coal deposition cycles are also analyzed. It is concluded that pore structure characteristics of the four cycles are quite different. In each water-transgression cycle, the vitrinite gradually increased and the inertinite gradually decreased, resulting in a decrease of the porosity, pore volume, specific surface area, and fractal dimension. While in each water-regression cycle, the vitrinite gradually decreased and the inertinite gradually increased, leading to an increase of the porosity, pore volume, specific surface area, and fractal dimension. A strong relationship exists between the porosity, pore volume, specific surface area, fractal dimension, and submacerals, with fusinite and semifusinite which contained more pores having a positive correlation, desmocollinite and corpovitrinite which contained few pores having a negative correlation.


BioResources ◽  
2021 ◽  
Vol 16 (3) ◽  
pp. 6074-6082
Author(s):  
Weikai Wang ◽  
Minghan Li ◽  
Jiabin Cai

In order to study the effects of a messmate heartwood extraction process on its cell wall pore structure and its drying ability, its nanopore structure was explored after via gas adsorption technology. Specifically, the messmate heartwood particles were extracted with methanol, and then the cell wall pore structure of the original and extracted samples were evaluated by N2 and CO2 sorption and pycnometer methods, respectively. Overall, compared with the original samples, the cell wall porosity, micropore volume, mesopore volume, BET specific surface area, and specific surface area of the micropores of the extracted messmate heartwoods increased by 2.55%, 0.007 cm3/g, 0.0014 cm3/g, 0.24 m2·g-1, and 21.9 m2·g-1, respectively. The cell wall pore volume measured via the gas adsorption method was smaller than the measurement from the pycnometer method. The results indicated that the presence of extractives made the messmate cell wall have a decreased pore volume and porosity, which may be one of the reasons messmate wood is difficult to dry. Messmate extractives primarily were present in the micropores of the cell wall in the range of 0.4 nm to 0.7 nm. However, gas sorption technology could not detect all the pores in the cell wall of the messmate heartwood sample.


2017 ◽  
Vol 36 (3-4) ◽  
pp. 904-918 ◽  
Author(s):  
Deyong Guo ◽  
Xiaojie Guo

In this paper, scanning electron microscopy, low-temperature N2 adsorption and CH4 isothermal adsorption experiments were performed on 11 coal samples with Ro,max between 0.98 and 3.07%. The pore structure characteristics of coals (specific surface area, total volume distribution) were studied to assess the gas adsorption capacity. The results indicate that there is significant heterogeneity on coal surface, containing numerous channel-like pores, bottle-shaped pores and wedge-shaped pores. Both Langmuir volume (VL) and Langmuir pressure (PL) show a stage change trend with the increase of coalification degree. For different coalification stages, there exist different factors influencing the VL and PL values. For low-rank coals (Ro,max < 1.1%), the increase of VL values and decrease of PL values are mainly due to the abundant primary pore and fracture within coal. For middle-rank coals (1.1% < Ro,max < 2.1%), the moisture content, vitrinite content and total pore volume are all the factors influencing VL, and the reduction of PL is mainly attributed to the decrease of moisture content and inertinite content. Meanwhile, this result is also closely related to the pore shape. For high-rank coals (Ro,max > 2.1%), VL values gradually increase and reach the maximum. When the coal has evolved into anthracite, liquid hydrocarbon within pore begins pyrolysis and gradually disappears, and a large number of macropores are converted into micropores, leading to the increase of specific surface area and total pore volume, corresponding to the increase of VL. In addition, the increase of vitrinite content within coal also contributes to the increase of VL. PL, reaches the minimum, indicating that the adsorption rate reaches the largest at the low pressure stage. The result is mainly controlled by the specific surface area and total pore volume of coal samples. This research results will provide a clearer insight into the relationship between adsorption parameters and coal rank, moisture content, maceral composition and pore structure, and it is of great significance for better assessing the gas adsorption capacity.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Yao Cheng ◽  
Yifeng Xie ◽  
Yulin Ma ◽  
Yanlin Zhao

In this study, the pore structure and fractal characteristics of shale samples with different bedding directions and sizes from the Longmaxi Formation of the Changning block in the Sichuan Basin were investigated by using CT imaging and low-temperature nitrogen adsorption experiments. The pore morphology, pore structure characteristics, relationships between the fractal dimensions and pore parameters, and effect of the size and bedding direction on pore morphology and various pore parameters were explored. In terms of pore structure characteristics, we found that the pores of shale samples were well developed and connected, forming a large number of pore clusters. The pores were mainly open pores and mesopores, which contributed the most to the specific surface area of the pores. Two fractal dimensions D1 and D2 were calculated from nitrogen adsorption data at relative pressures of 0–0.45 and 0.45–1, using the FHH method. These fractal dimensions characterized the pore surface and pore structure complexity, respectively. D1 ranged from 2.773 to 2.923, with a mean value of 2.821, and D2 varied from 2.853 to 2.899, with a mean value of 2.874. These variations indicated that there were irregular pore surfaces and sophisticated pore structures in the shale. The sample size and bedding direction had a significant impact on pore morphology and various pore parameters. Several pore characteristics of the vertical samples were superior to those of the horizontal samples. With an increase in size, the pore distribution became more uniform, the number of pore clusters increased, and the connectivity between pore clusters was enhanced. There was a good positive correlation between the fractal dimension D2 and specific surface area and moderate positive correlation between D2 and porosity and between D2 and pore volume. However, the fractal dimension D1 had a weak negative correlation with porosity and specific surface area and moderate negative correlation with pore volume. Moreover, both D1 and D2 tended to decrease with increasing average pore diameter.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Zhihui Wen ◽  
Qi Wang ◽  
Yunpeng Yang ◽  
Leilei Si

In this study, the full-size pore structure characteristics of six different-rank coal samples were investigated and analyzed from three perspectives, namely, pore shape, pore volume, and pore specific surface area, by performing a high-pressure mercury injection experiment and a low-temperature nitrogen adsorption experiment. Next, the full-size pore volumes and pore specific surface areas of the six coal samples were accurately characterized through a combination of the two experiments. Furthermore, the relationships between volatile matter content and pore volume and between volatile matter content and pore specific surface area were fitted and analyzed. Finally, the influences of metamorphic degree on pore structure were discussed. The following conclusions were obtained. The pore shapes of different-rank coal samples differ significantly. With the increase of metamorphic degree, the full-size pore volume and pore specific surface area both decrease first and then increase. Among the pores with various sizes, micropores are the largest contributor to the full-size pore volume and pore specific surface area. The fitting curves between volatile matter content and pore volume and between volatile matter content and pore specific surface area can well reflect the influence and control of metamorphic degree on pore volume and pore specific surface area, respectively. With the increase of volatile matter content, the pore volume and the pore specific surface area both vary in a trend resembling a reverse parabola.


Materials ◽  
2020 ◽  
Vol 13 (18) ◽  
pp. 4038 ◽  
Author(s):  
Jungsoo Lee ◽  
Young Cheol Choi

Characterization of porous materials is essential for predicting and modeling their adsorption performance, strength, and durability. However, studies on the optimization of the pore structure to efficiently remove pollutants in the atmosphere by physical adsorption of construction materials have been insufficient. This study investigated the pore structure characteristics of foam composites. Porous foam composites were fabricated using foam composite with high porosity, open pores, and palm shell active carbon with micropores. The content was substituted 5%, 10%, 15%, and 20% by volume of cement. From the measured nitrogen adsorption isotherm, the pore structure of the foam composite was analyzed using the Brunauer–Emmett–Teller (BET) theory, Barrett–Joyner–Halenda (BJH) analysis, and Harkins-jura adsorption isotherms. From the analysis results, it was found that activated carbon increases the specific surface area and micropore volume of the foam composite. The specific surface area and micropore volume of the foam composite containing 15% activated carbon were 106.48 m2/g and 29.80 cm3/g, respectively, which were the highest values obtained in this study. A foam composite with a high micropore volume was found to be effective for the adsorption of air pollutants.


Minerals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 298
Author(s):  
Chenlong Ding ◽  
Jinxian He ◽  
Hongchen Wu ◽  
Xiaoli Zhang

Ordos Basin is an important continental shale gas exploration site in China. The micropore structure of the shale reservoir is of great importance for shale gas evaluation. The Taiyuan Formation of the lower Permian is the main exploration interval for this area. To examine the nanometer pore structures in the Taiyuan Formation shale reservoirs in the Lin-Xing area, Northern Shaanxi, the microscopic pore structure characteristics were analyzed via nitrogen adsorption experiments. The pore structure parameters, such as specific surface area, pore volume, and aperture distribution, of shale were calculated; the significance of the pore structure for shale gas storage was analyzed; and the main controlling factors of pore development were assessed. The results indicated the surface area and hole volume of the shale sample to be 0.141–2.188 m2/g and 0.001398–0.008718 cm3/g, respectively. According to the IUPAC (International Union of Pure and Applied Chemistry) classification, mesopores and macropores were dominant in the pore structure, with the presence of a certain number of micropores. The adsorption curves were similar to the standard IV (a)-type isotherm line, and the hysteresis loop type was mainly similar to H3 and H4 types, indicating that most pores are dominated by open type pores, such as parallel plate-shaped pores and wedge-shaped slit pores. The micropores and mesopores provide the vast majority of the specific surface area, functioning as the main area for the adsorption of gas in the shale. The mesopores and macropores provide the vast majority of the pore volume, functioning as the main storage areas for the gas in the shale. Total organic carbon had no notable linear correlation with the total pore volume and the specific surface area. Vitrinite reflectance (Ro) had no notable correlation with the specific surface area, but did have a low “U” curve correlation with the total pore volume. There was no relationship between the quartz content and specific surface area and total pore volume. In addition, there was no notable correlation between the clay mineral content and total specific surface area and total pore volume.


2010 ◽  
Vol 660-661 ◽  
pp. 959-964
Author(s):  
Alexander Rodrigo Arakaki ◽  
Walter Kenji Yoshito ◽  
Valter Ussui ◽  
Dolores Ribeiro Ricci Lazar

One of the main applications of ceria-based (CeO2) ceramics is the manufacturing of Intermediate Temperature Solid Oxide Fuel Cells electrolytes. In order to improve ionic conductivity and densification of these materials various powder synthesis routes have been studied. In this work powders with composition Ce0.8(SmGd)0.2O1.9 have been synthesized by coprecipitation and hydrothermal treatment. A concentrate of rare earths containing 90wt% of CeO2 and other containing 51% of Sm2O3 and 30% of Gd2O3, both prepared from monazite processing, were used as precursor materials. The powders were characterized by X-ray diffraction, scanning and transmission electron microscopy, agglomerate size distribution by laser scattering and specific surface area by gas adsorption. Ceramic sinterability was evaluated by dilatometry and density measurements by Archimedes method. High specific surface area powders (~100m2/g) and cubic fluorite structure were obtained after hydrothermal treatment around 200°C. Ceramic densification was improved when compared to the one prepared from powders calcined at 800°C.


2019 ◽  
Vol 19 (11) ◽  
pp. 7178-7184 ◽  
Author(s):  
Xuteng Xing ◽  
Jihui Wang ◽  
Qiushi Li ◽  
Wenbin Hu

Halloysite nanotubes (HNTs) are natural clay minerals with a tubular structure. They have attracted considerable attention as a potential nanocontainer due to their abundance, biocompatibility and nontoxicity. In this study, HNTs were handled with H2SO4 at 70 °C. The morphology and structure of these acid-treated and original HNTs were investigated by scanning electron microscopy (SEM), energy dispersion spectrum (EDS), transmission electron microscope (TEM), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR), and their specific surface area was determined by automatic gas adsorption analyzer. The loading efficiency and release behavior of acid-treated HNTs for 2-Mercaptobenzothiazole (MBT) were investigated by UV-vis spectrophotometer. Results show that acid-treated HNTs retained their tubular structure, but their internal diameter expanded by 35–37 nm after 32 h of acid treatment. After 72 h of acid treatment, HNTs can be transferred into amorphous silica nanotubes. Moreover, the specific surface area of these HNTs samples initially increased with the increase in acid treatment time but then started to decrease after 32 h. The specific surface area of acid-treated HNTs at 32 h can reach 251.6 m2/g, which was much higher than that for untreated HNTs (55.3 m2/g). In addition, the loading capacity of acid-treated HNTs can reach 32.1% for HNTs-32, which is about three times higher than that of original HNTs. The acid treatment has slight effect on the release behavior.


Sign in / Sign up

Export Citation Format

Share Document