The causes and consequences of algal blooms: The Cladophora glomerata bloom and the Neva estuary (eastern Baltic Sea)

2010 ◽  
Vol 61 (4-6) ◽  
pp. 183-188 ◽  
Author(s):  
Yulia I. Gubelit ◽  
Nadezhda A. Berezina
2018 ◽  
Vol 126 ◽  
pp. 43-50 ◽  
Author(s):  
Sergey M. Golubkov ◽  
Nadezhda A. Berezina ◽  
Yulia I. Gubelit ◽  
Anna S. Demchuk ◽  
Mikhail S. Golubkov ◽  
...  

2017 ◽  
Vol 14 (16) ◽  
pp. 3831-3849 ◽  
Author(s):  
Katharine J. Crawfurd ◽  
Santiago Alvarez-Fernandez ◽  
Kristina D. A. Mojica ◽  
Ulf Riebesell ◽  
Corina P. D. Brussaard

Abstract. Ocean acidification resulting from the uptake of anthropogenic carbon dioxide (CO2) by the ocean is considered a major threat to marine ecosystems. Here we examined the effects of ocean acidification on microbial community dynamics in the eastern Baltic Sea during the summer of 2012 when inorganic nitrogen and phosphorus were strongly depleted. Large-volume in situ mesocosms were employed to mimic present, future and far future CO2 scenarios. All six groups of phytoplankton enumerated by flow cytometry ( <  20 µm cell diameter) showed distinct trends in net growth and abundance with CO2 enrichment. The picoeukaryotic phytoplankton groups Pico-I and Pico-II displayed enhanced abundances, whilst Pico-III, Synechococcus and the nanoeukaryotic phytoplankton groups were negatively affected by elevated fugacity of CO2 (fCO2). Specifically, the numerically dominant eukaryote, Pico-I, demonstrated increases in gross growth rate with increasing fCO2 sufficient to double its abundance. The dynamics of the prokaryote community closely followed trends in total algal biomass despite differential effects of fCO2 on algal groups. Similarly, viral abundances corresponded to prokaryotic host population dynamics. Viral lysis and grazing were both important in controlling microbial abundances. Overall our results point to a shift, with increasing fCO2, towards a more regenerative system with production dominated by small picoeukaryotic phytoplankton.


2016 ◽  
Author(s):  
H. Dietze ◽  
U. Löptien

Abstract. Deoxygenation in the Baltic Sea endangers fish yields and favours noxious algal blooms. Yet, vertical transport processes ventilating the oxygen-deprived waters at depth and replenishing nutrient-deprived surface waters (thereby fuelling export of organic matter to depth), are not comprehensively understood. Here, we investigate the effects of the interaction between surface currents and winds (also referred to as eddy/wind effects) on upwelling in an eddy-rich general ocean circulation model of the Baltic Sea. Contrary to expectations we find that accounting for current/wind effects does inhibit the overall vertical exchange between oxygenated surface waters and oxygen-deprived water at depth. At major upwelling sites, however, as e.g. off the south coast of Sweden and Finland, the reverse holds: the interaction between topographically steered surface currents with winds blowing over the sea results in a climatological sea surface temperature cooling of 0.5 K. This implies that current/wind effects drive substantial local upwelling of cold and nutrient-replete waters.


Sign in / Sign up

Export Citation Format

Share Document