Coastline in-situ burning of oil spills in the Arctic. Studies of the environmental impacts on the littoral zone community

2021 ◽  
Vol 173 ◽  
pp. 113128
Author(s):  
Susse Wegeberg ◽  
Janne Fritt-Rasmussen ◽  
Ole Geertz-Hansen ◽  
Jozef Wiktor ◽  
Lonnie Bogø-Wilms ◽  
...  
1987 ◽  
Vol 1987 (1) ◽  
pp. 389-394 ◽  
Author(s):  
Harry Whittaker

ABSTRACT A major oil spill in the Arctic, whether from a tanker or an oil rig, could result in large concentrations of oil among broken ice and/or thousands of oiled melt pools. The remoteness of the area and the inadequacy of other countermeasures make in-situ burning the only possible response. Helicopter-deployable igniters have been developed to ignite the oil, but studies have shown that use of these devices has severe logistical constraints. The use of a helicopter-borne laser system as an alternative to, or in conjunction with, the igniters has been pursued from conceptual development to completion of the engineering design phase. The concept was examined by theoretical analysis combined with laboratory studies. This work indicated that a dual-laser system would ignite both fresh and weathered crude oils at temperatures representative of an arctic spring or fall day. A series of outdoor experiments was carried out in Kanata, Ontario, Canada, in March 1985. These experiments, under climatic conditions very similar to those in the Canadian Arctic in June, demonstrated that a two-laser system would ignite both fresh and weathered crudes. An engineering feasibility and design study was undertaken. The study confirmed that a system having the required performance can be assembled from existing, proven hardware and operated effectively from a helicopter. The development of the laser ignition of oil spills from concept through engineering design is described.


1974 ◽  
Vol 3 (2) ◽  
pp. 195-208
Author(s):  
J. M. Raisbeck ◽  
M. F. Mohtadi

Author(s):  
Alexander Myasoedov ◽  
Alexander Myasoedov ◽  
Sergey Azarov ◽  
Sergey Azarov ◽  
Ekaterina Balashova ◽  
...  

Working with satellite data, has long been an issue for users which has often prevented from a wider use of these data because of Volume, Access, Format and Data Combination. The purpose of the Storm Ice Oil Wind Wave Watch System (SIOWS) developed at Satellite Oceanography Laboratory (SOLab) is to solve the main issues encountered with satellite data and to provide users with a fast and flexible tool to select and extract data within massive archives that match exactly its needs or interest improving the efficiency of the monitoring system of geophysical conditions in the Arctic. SIOWS - is a Web GIS, designed to display various satellite, model and in situ data, it uses developed at SOLab storing, processing and visualization technologies for operational and archived data. It allows synergistic analysis of both historical data and monitoring of the current state and dynamics of the "ocean-atmosphere-cryosphere" system in the Arctic region, as well as Arctic system forecasting based on thermodynamic models with satellite data assimilation.


Energies ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2246
Author(s):  
Georgia Charalampous ◽  
Efsevia Fragkou ◽  
Konstantinos A. Kormas ◽  
Alexandre B. De Menezes ◽  
Paraskevi N. Polymenakou ◽  
...  

The diversity and degradation capacity of hydrocarbon-degrading consortia from surface and deep waters of the Eastern Mediterranean Sea were studied in time-series experiments. Microcosms were set up in ONR7a medium at in situ temperatures of 25 °C and 14 °C for the Surface and Deep consortia, respectively, and crude oil as the sole source of carbon. The Deep consortium was additionally investigated at 25 °C to allow the direct comparison of the degradation rates to the Surface consortium. In total, ~50% of the alkanes and ~15% of the polycyclic aromatic hydrocarbons were degraded in all treatments by Day 24. Approximately ~95% of the total biodegradation by the Deep consortium took place within 6 days regardless of temperature, whereas comparable levels of degradation were reached on Day 12 by the Surface consortium. Both consortia were dominated by well-known hydrocarbon-degrading taxa. Temperature played a significant role in shaping the Deep consortia communities with Pseudomonas and Pseudoalteromonas dominating at 25 °C and Alcanivorax at 14 °C. Overall, the Deep consortium showed a higher efficiency for hydrocarbon degradation within the first week following contamination, which is critical in the case of oil spills, and thus merits further investigation for its exploitation in bioremediation technologies tailored to the Eastern Mediterranean Sea.


Polar Biology ◽  
2021 ◽  
Vol 44 (3) ◽  
pp. 575-586
Author(s):  
Pepijn De Vries ◽  
Jacqueline Tamis ◽  
Jasmine Nahrgang ◽  
Marianne Frantzen ◽  
Robbert Jak ◽  
...  

AbstractIn order to assess the potential impact from oil spills and decide the optimal response actions, prediction of population level effects of key resources is crucial. These assessments are usually based on acute toxicity data combined with precautionary assumptions because chronic data are often lacking. To better understand the consequences of applying precautionary approaches, two approaches for assessing population level effects on the Arctic keystone species polar cod (Boreogadus saida) were compared: a precautionary approach, where all exposed individuals die when exposed above a defined threshold concentration, and a refined (full-dose-response) approach. A matrix model was used to assess the population recovery duration of scenarios with various but constant exposure concentrations, durations and temperatures. The difference between the two approaches was largest for exposures with relatively low concentrations and short durations. Here, the recovery duration for the refined approach was less than eight times that found for the precautionary approach. Quantifying these differences helps to understand the consequences of precautionary assumptions applied to environmental risk assessment used in oil spill response decision making and it can feed into the discussion about the need for more chronic toxicity testing. An elasticity analysis of our model identified embryo and larval survival as crucial processes in the life cycle of polar cod and the impact assessment of oil spills on its population.


2016 ◽  
Vol 97 (6) ◽  
pp. 1033-1056 ◽  
Author(s):  
Taneil Uttal ◽  
Sandra Starkweather ◽  
James R. Drummond ◽  
Timo Vihma ◽  
Alexander P. Makshtas ◽  
...  

Abstract International Arctic Systems for Observing the Atmosphere (IASOA) activities and partnerships were initiated as a part of the 2007–09 International Polar Year (IPY) and are expected to continue for many decades as a legacy program. The IASOA focus is on coordinating intensive measurements of the Arctic atmosphere collected in the United States, Canada, Russia, Norway, Finland, and Greenland to create synthesis science that leads to an understanding of why and not just how the Arctic atmosphere is evolving. The IASOA premise is that there are limitations with Arctic modeling and satellite observations that can only be addressed with boots-on-the-ground, in situ observations and that the potential of combining individual station and network measurements into an integrated observing system is tremendous. The IASOA vision is that by further integrating with other network observing programs focusing on hydrology, glaciology, oceanography, terrestrial, and biological systems it will be possible to understand the mechanisms of the entire Arctic system, perhaps well enough for humans to mitigate undesirable variations and adapt to inevitable change.


Science ◽  
1974 ◽  
Vol 186 (4166) ◽  
pp. 843-845
Author(s):  
R. C. Ayers ◽  
H. O. Jahns ◽  
J. L. Glaeser

Author(s):  
D.D. Evans ◽  
G.W. Mulholland ◽  
H.R. Baum ◽  
W.D. Walton ◽  
K.B. McGrattan
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document