Microstructure and friction properties of plasma sprayed Al–Si alloyed cast iron coatings

2006 ◽  
Vol 96 (1) ◽  
pp. 170-175 ◽  
Author(s):  
M.F. Morks ◽  
Y. Tsunekawa ◽  
N.F. Fahim ◽  
M. Okumiya
2010 ◽  
Vol 44-47 ◽  
pp. 2144-2147
Author(s):  
Ya Zhe Xing ◽  
Chao Ping Jiang ◽  
Hong Chen ◽  
Jian Min Hao

In this work, three cast iron coatings were produced by atmospheric plasma spraying. During spraying, the surface temperature of three coatings (substrate temperature) was controlled to be averagely 50oC, 180oC and 240oC by changing the processing parameters. X-ray diffraction (XRD) was employed to analyze the phase structure of the starting powder and the coatings. The results showed that the powder was mainly composed of (Fe,Cr)7C3 and martensite and both the spraying processing and the substrate temperature exerted no influence on coating phase structure. An optical microscope (OM) was used to characterize the microstructure of the cross-section and surface of the coatings. It was found that the cross sectional hardness increased with the increase of the substrate temperature due to the improvement in interlamellar bonding.


2021 ◽  
Vol 303 ◽  
pp. 01005
Author(s):  
Dmitry Lubyanoi ◽  
Evgeny Pudov ◽  
Evgeny Kuzin ◽  
Olga Semenova

The article shows the relevance of the use of alloyed cast iron in mining and metallurgical engineering. The article discusses the technologies for producing naturally alloyed cast iron. For working bodies and friction units of mining machines, such as pumps, coal pumps, hydrocyclones, crushers and mills. The main type of wear for them is abrasive. To increase the wear resistance of cast iron the production of cast iron has not been sufficiently studied yet. Although the use of cast iron in a complex alloyed with manganese, silicon, chromium, titanium and vanadium has been studied. The article studies the influence of manganese, titanium and vanadium on the mechanical properties and performance of machine parts and products of mining and metallurgical production in contact with high-temperature and highly abrasive media. The rational content of titanium and vanadium in gray cast irons is established in the range of 0.05-0.1%, which ensures their heat resistance and increases their wear resistance. The content of these elements can be increased to 0.07-0.12%. Bushings made of this cast iron have the required wear resistance and can increase the operational reliability of the equipment in the conditions of mining and metallurgical production. They also replace non-ferrous metals, as well as products obtained by powder metallurgy methods.


1982 ◽  
Vol 18 (11) ◽  
pp. 544-545
Author(s):  
G. N. Shtyka ◽  
A. V. Borodin ◽  
V. N. Oleinik ◽  
S. N. Primerov

2021 ◽  
Vol 58 (8) ◽  
pp. 507-538
Author(s):  
S. Duwe ◽  
B. Tonn

Abstract For numerous steel grades, detailed descriptions of different etching techniques and etching times for microstructural analysis are available. However, there are only few reference works for low-alloyed cast iron. Particularly for complex microstructures with combined fractions of bainite, ferrite, pearlite, retained austenite, carbides and martensite, there are only few detailed collections. In addition, the effects of the etchants are rarely investigated for the same image section. Therefore, this study will exclusively compare identical microstructural regions and the effect of different etchants on them. Two specific sample areas were selected in a low-alloyed cast iron and the effect of both surface removal etching and tint etching reagents on them was examined under a reflected light optical microscope and a scanning electron microscope. The results of the study have shown that some etchants for complex microstructures are only suitable in case potentially present phases are already known. However, the combined use of two etching solutions in particular, led to a very detailed and highcontrast image, capable of revealing and resolving microstructures with a variety of phases.


Sign in / Sign up

Export Citation Format

Share Document