Synthesis of CdS nanoparticle by sol-gel method as low temperature NO2 sensor

2020 ◽  
Vol 239 ◽  
pp. 121975 ◽  
Author(s):  
Rakesh K. Sonker ◽  
B.C. Yadav ◽  
Vinay Gupta ◽  
Monika Tomar
2013 ◽  
Vol 745-746 ◽  
pp. 673-678 ◽  
Author(s):  
Wei Hui Jiang ◽  
Zhi Fang Xu ◽  
Jian Min Liu ◽  
Qing Xia Zhu ◽  
Quan Zhang

Aluminum titanate (Al2TiO5) powder has been synthesized at low temperature via nonhydrolytic sol-gel method by using aluminum powder as aluminum source, titanium tetrachloride as titanium source, anhydrous ethanol as oxygen donor with different catalysts. The phase transformation of aluminum titanate xerogel powder during heat treatment and the influence of the mixing orders of raw materials, catalyst kinds on the synthesis of aluminum titanate were investigated by means of differential-thermal analysis (DTA-TG), X-ray diffraction (XRD), transmission electron microscope (TEM). The results indicated that aluminum titanate powder was easily synthesized at 750 °C by using AlCl3 as catalyst with a mixing order of adding TiCl4 before AlCl3 into aluminum alcohol mixture. The catalytic order of the different catalysts in the preparation process of aluminum titanate is: FeCl3> AlCl3> MgCl2. The catalyst promoted the activation of metal aluminum powder and played a major role in the synthesis of aluminum titanate powder at low temperature via nonhydrolytic sol-gel method.


2011 ◽  
Vol 412 ◽  
pp. 223-226 ◽  
Author(s):  
Wei Hui Jiang ◽  
Yan Hui Yang ◽  
Qing Xia Zhu ◽  
Jian Min Liu

ron-zircon pigment has been synthesized by non-hydrolytic sol-gel method using zirconium chloride and tetraethoxysilane as precursors, anhydrous ferric chloride as colorant, lithium fluoride as mineralizer and anhydrous ethanol as solvent. Iron-zircon pigment has been characterized by means of DTA-TG, XRD, Colorimeter and TEM. The results show that only a small fraction of iron is incorporated in the zircon crystal structure while the remaining iron cations are trapped within the zircon matrix. The iron-zircon with the red value (a*) of 20.64 can be synthesized at 700°C with the optimum Fe/Zr molar ratio of 0.2.


2007 ◽  
Vol 42 (23) ◽  
pp. 9801-9806 ◽  
Author(s):  
Radhouane Bel Hadj Tahar ◽  
Noureddine Bel Hadj Tahar ◽  
Abdelhamid Ben Salah

2019 ◽  
Vol 89 (3) ◽  
pp. 663-671
Author(s):  
Jennifer Gadient ◽  
Veronica Livingstone ◽  
Daniela Klink ◽  
Corey R. Grice ◽  
Cora Lind

2014 ◽  
Vol 49 (14) ◽  
pp. 4722-4734 ◽  
Author(s):  
Dongyun Guo ◽  
Kuninori Sato ◽  
Shingo Hibino ◽  
Tetsuya Takeuchi ◽  
Hisami Bessho ◽  
...  

2015 ◽  
Vol 647 ◽  
pp. 627-636 ◽  
Author(s):  
C. Leyva-Porras ◽  
A. Toxqui-Teran ◽  
O. Vega-Becerra ◽  
M. Miki-Yoshida ◽  
M. Rojas-Villalobos ◽  
...  

2012 ◽  
Vol 562-564 ◽  
pp. 260-264
Author(s):  
Min Zhong ◽  
Jing Jing Yu ◽  
Zhi Hao Wei ◽  
Ping Zhan Si

Pure TiO2 , Ti 0.75 Fe0.25 O2, Ti0.75 Ni0.25 O2, Ti0.75 Co0.25 O2 nanocrystals were prepared by low temperature sol-gel method. The samples were characterized by using transmission electron microscope, X-ray diffractometer and ultraviolet-visible spectrophotometer to study the effect of transition metal ions on the photocatalytic properties of TiO2 nanocrystals. The results show that the pure TiO2 and Ti0.75 Fe0.25 O2, Ti0.75 Ni0.25 O2, Ti0.75 Co0.25 O2 nanocrystals were granular and the size of which is 3.5, 2.9, 3.6, 3.9 nm, respectively. The titania anatase phases appear in the pure TiO2 , the Ti0.75 Fe0.25 O2, Ti0.75 Ni0.25 O2, Ti0.75 Co0.25 O2. The absorption edge of Ti0.75 Fe0.25 O2occur red shift comparing with that of pure TiO2 and the absorption edge of Ti0.75 Fe0.25 O2and Ti0.75 Fe0.25 O2occur blue shift comparing with that of pure TiO2. The photocatalytic properties of pure TiO2, Ti0.75 Fe0.25 O2, Ti0.75 Fe0.25 O2, Ti0.75 Fe0.25 O2nanocrystals synthesized at low temperature by sol-gel method were investigated by degrading the methyl orange solution under ultraviolet irradiation. The degradation rate of Ti0.75 Fe0.25 O2is the highest (60%) and that of Ti0.75Co0.25O2 (10%) is the lowest among these catalysts after degradation for 120min.The result shows that the photocatalytic property ofTi0.75 Fe0.25 O2nanocrystals synthesized at low temperature is obviously better than that of pure TiO2 and Ti0.75 Fe0.25 O2, Ti0.75 Fe0.25 O2.


Sign in / Sign up

Export Citation Format

Share Document