Micromechanical modeling over two length-scales for elastic properties of graphene nanoplatelet/graphite fiber/polyimide composites

2021 ◽  
Vol 262 ◽  
pp. 124255
Author(s):  
Hongqiang Wan ◽  
Lvdou Fan ◽  
Juanjuan Jia ◽  
Quanli Han ◽  
Mohammad Yaghoub Abdollahzadeh Jamalabadi
2019 ◽  
Vol 274 ◽  
pp. 05004
Author(s):  
Zhiyuan Lin ◽  
Ding Fan ◽  
Shangtong Yang

Cementitious nano-composites have recently attracted considerable research interest in order to improve their properties such as strength and durability. Graphene oxide (GO) is being considered as an ideal candidate for enhancing the mechanical properties of the cement due to its good dispersion property and high surface area. Much of work has been done on experimentally investigating the mechanical properties of GO-cementitious composites; but there are currently no models for accurate estimation of their mechanical properties, making proper analysis and design of GO-cement based materials a major challenge. This paper attempts to develop a novel multi-scale analytical model for predicting the elastic modulus of GO-cement taking into account the GO/cement ratio, porosity and mechanical properties of different phases. This model employs Eshelby tensor and Mori-Tanaka solution in the process of upscaling the elastic properties of GO-cement through different length scales. In-situ micro bending tests were conducted to elucidate the behavior of the GO-cement composites and verify the proposed model. The obtained results showed that the addition of GO can change the morphology and enhance the mechanical properties of the cement. The developed model can be used as a tool to determine the elastic properties of GO-cement through different length scales.


Polymer ◽  
2004 ◽  
Vol 45 (7) ◽  
pp. 2433-2442 ◽  
Author(s):  
F. Bédoui ◽  
J. Diani ◽  
G. Régnier

2021 ◽  
Vol 60 (4) ◽  
pp. 294-319
Author(s):  
Joseline Mena-Negrete ◽  
Oscar C. Valdiviezo-Mijangos ◽  
Enrique Coconi-Morales ◽  
Rubén Nicolás-López

This work presents an approach to characterize the pore-structure and anisotropy in carbonate samples based on the Effective Medium Method (EMM). It considers a matrix with spheroidal inclusions which induce a transverse anisotropy. The compressional wave (VP), vertical (VSV)  and horizontal (VSH)  shear wave velocities are estimated taking into account parameters as characteristic length, frequency, angle of wave incidence, aspect ratio, mineralogy, and pore-filling fluid to predict pore shape in carbonates. Ranges of aspect ratios are shown to discriminate different pore types: intercrystalline, intergranular, moldic, and vuggy. The angle of wave incidence is a determinant parameter in the estimation of VP(0º, 45º, 90º), VSV(0º) and VSH(90º) to calculate dynamic anisotropic Young’s modulus (E33) and Poisson’s ratio (v31), as well as the Thomsen parameters, Epsilon, Gamma and Delta for quantification of the anisotropic pore-structure. The obtained results establish that the size, as well as the pore-structure, have a more significant impact on the elastic properties when the porosity takes values greater than 4% for the three frequencies, ultrasonic, sonic, and seismic. This investigation predicts the pore-structure and pore-size to improve characterization and elastic properties modeling of carbonate reservoirs. Validation of results includes porosity measurements and ultrasonic velocity data for different carbonate samples.


2021 ◽  
pp. 416-434
Author(s):  
D. Fellah ◽  
S. Barboura ◽  
T. Tilmatine ◽  
J. Li ◽  
M. S. Kachi ◽  
...  

1983 ◽  
Vol 5 (4) ◽  
pp. 109 ◽  
Author(s):  
WW Feng ◽  
KL Reifsnider ◽  
GP Sendeckyj ◽  
TT Chiao ◽  
GL Rodericks ◽  
...  

2017 ◽  
Vol 02 (04) ◽  
pp. 1750015 ◽  
Author(s):  
L. Ai ◽  
X.-L. Gao

3D printable two-phase interpenetrating phase composites (IPCs) are designed by embedding a 3D periodic re-entrant lattice structure (as the reinforcing phase) in a matrix phase. These IPCs display the cubic or tetragonal symmetry. A micromechanical model is developed to evaluate effective elastic properties of the IPCs. Effective Young's moduli, shear moduli and Poisson's ratios (PRs) of each IPC are determined from the effective stiffness and compliance matrices of the composite, which are obtained through a homogenization analysis using a unit cell-based finite element (FE) model incorporating periodic boundary conditions. The FE simulation results are also compared with those based on various analytical bounding techniques in micromechanics, including the Voigt–Reuss, Hashin–Shtrikman, and Tuchinskii bounds. The effective properties of the IPC can be tailored by adjusting five geometrical parameters, including two strut lengths, two re-entrant angles and one strut diameter, and elastic properties of the two constituent materials. The numerical results reveal that IPCs with a negative PR can be generated by using a compliant matrix material and large re-entrant angles. In addition, it is found that the two re-entrant angles can greatly affect other effective elastic properties of the IPC: the effective shear modulus can be enhanced, while the effective Young's modulus can be enhanced or compromised with the increase of the re-entrant angles. Furthermore, it is seen that by adjusting one of the two re-entrant angles or one of the two strut lengths, the material symmetry exhibited by the IPC can be changed from cubic to tetragonal.


Sign in / Sign up

Export Citation Format

Share Document