Micromechanical modeling of elastic properties in polyolefins

Polymer ◽  
2004 ◽  
Vol 45 (7) ◽  
pp. 2433-2442 ◽  
Author(s):  
F. Bédoui ◽  
J. Diani ◽  
G. Régnier
2021 ◽  
Vol 60 (4) ◽  
pp. 294-319
Author(s):  
Joseline Mena-Negrete ◽  
Oscar C. Valdiviezo-Mijangos ◽  
Enrique Coconi-Morales ◽  
Rubén Nicolás-López

This work presents an approach to characterize the pore-structure and anisotropy in carbonate samples based on the Effective Medium Method (EMM). It considers a matrix with spheroidal inclusions which induce a transverse anisotropy. The compressional wave (VP), vertical (VSV)  and horizontal (VSH)  shear wave velocities are estimated taking into account parameters as characteristic length, frequency, angle of wave incidence, aspect ratio, mineralogy, and pore-filling fluid to predict pore shape in carbonates. Ranges of aspect ratios are shown to discriminate different pore types: intercrystalline, intergranular, moldic, and vuggy. The angle of wave incidence is a determinant parameter in the estimation of VP(0º, 45º, 90º), VSV(0º) and VSH(90º) to calculate dynamic anisotropic Young’s modulus (E33) and Poisson’s ratio (v31), as well as the Thomsen parameters, Epsilon, Gamma and Delta for quantification of the anisotropic pore-structure. The obtained results establish that the size, as well as the pore-structure, have a more significant impact on the elastic properties when the porosity takes values greater than 4% for the three frequencies, ultrasonic, sonic, and seismic. This investigation predicts the pore-structure and pore-size to improve characterization and elastic properties modeling of carbonate reservoirs. Validation of results includes porosity measurements and ultrasonic velocity data for different carbonate samples.


2021 ◽  
pp. 416-434
Author(s):  
D. Fellah ◽  
S. Barboura ◽  
T. Tilmatine ◽  
J. Li ◽  
M. S. Kachi ◽  
...  

2017 ◽  
Vol 02 (04) ◽  
pp. 1750015 ◽  
Author(s):  
L. Ai ◽  
X.-L. Gao

3D printable two-phase interpenetrating phase composites (IPCs) are designed by embedding a 3D periodic re-entrant lattice structure (as the reinforcing phase) in a matrix phase. These IPCs display the cubic or tetragonal symmetry. A micromechanical model is developed to evaluate effective elastic properties of the IPCs. Effective Young's moduli, shear moduli and Poisson's ratios (PRs) of each IPC are determined from the effective stiffness and compliance matrices of the composite, which are obtained through a homogenization analysis using a unit cell-based finite element (FE) model incorporating periodic boundary conditions. The FE simulation results are also compared with those based on various analytical bounding techniques in micromechanics, including the Voigt–Reuss, Hashin–Shtrikman, and Tuchinskii bounds. The effective properties of the IPC can be tailored by adjusting five geometrical parameters, including two strut lengths, two re-entrant angles and one strut diameter, and elastic properties of the two constituent materials. The numerical results reveal that IPCs with a negative PR can be generated by using a compliant matrix material and large re-entrant angles. In addition, it is found that the two re-entrant angles can greatly affect other effective elastic properties of the IPC: the effective shear modulus can be enhanced, while the effective Young's modulus can be enhanced or compromised with the increase of the re-entrant angles. Furthermore, it is seen that by adjusting one of the two re-entrant angles or one of the two strut lengths, the material symmetry exhibited by the IPC can be changed from cubic to tetragonal.


Materials ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 6083
Author(s):  
Aharon Farkash ◽  
Brigit Mittelman ◽  
Shmuel Hayun ◽  
Elad Priel

The impact of weak particle-matrix interfaces in aluminum matrix composites (AMCs) on effective elastic properties was studied using micromechanical finite-element analysis. Both simplified unit cell representations (i.e., representative area or volume elements) and “real” microstructure-based unit cells were considered. It is demonstrated that a 2D unit cell representation provides accurate effective properties only for strong particle-matrix bond conditions, and underpredicts the effective properties (compared to 3D unit cell computations) for weak interfaces. The computations based on real microstructure of an Al–TiB2 composite fabricated using spark plasma sintering (SPS) show that, for weak interfaces, the effective elastic properties under tension are different from those obtained under compression. Computations show that differences are the result of the local stress and strain fields, and contact mechanics between particles and the matrix. Preliminary measurements of the effective elastic properties using the ultrasonic pulse-echo technique and compression experiments support the trends observed in computational analysis.


2010 ◽  
Vol 48 (20) ◽  
pp. 2173-2184 ◽  
Author(s):  
A. Sedighiamiri ◽  
T. B. Van Erp ◽  
G. W. M. Peters ◽  
L. E. Govaert ◽  
J. A. W. van Dommelen

Sign in / Sign up

Export Citation Format

Share Document