Mechanical properties and deformation mechanisms in CoCrFeMnNi high entropy alloys: A molecular dynamics study

Author(s):  
Kuan-Ting Chen ◽  
Ting-Ju Wei ◽  
Guo-Chi Li ◽  
Mei-Yi Chen ◽  
Yi-Shiang Chen ◽  
...  
Author(s):  
Gen Lin ◽  
Jianwu Guo ◽  
Pengfei Ji

As a novel alloy material with outstanding mechanical properties, high-entropy alloys have a wide range of promising applications. By establishing individual Au, Ag, Cu, Ni, and Pd nanolaminates with faced-centered-cubic...


Crystals ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 48
Author(s):  
Cuixia Liu ◽  
Rui Wang ◽  
Zengyun Jian

The mechanical properties of high-entropy alloys are superior to those of traditional alloys. However, the key problem of finding a strengthening mechanism is still challenging. In this work, the molecular dynamics method is used to calculate the tensile properties of face-centered cubic Al0.1CoCrFeNi high-entropy alloys containing Σ3 grain boundaries and without grain boundary. The atomic model was established by the melting rapid cooling method, then stretched by the static drawing method. The common neighbor analysis and dislocation extraction algorithm are used to analyze the crystal evolution mechanism of Σ3 grain boundaries to improve the material properties of high-entropy alloys during the tensile test. The results show that compared with the mechanical properties Al0.1CoCrFeNi high-entropy alloys without grain boundary, the yield strength and Young’s modulus of a high-entropy alloy containing Σ3 grain boundary are obviously larger than that of high-entropy alloys without grain boundary. Dislocation type includes mainly 1/6<112> Shockley partial dislocations, a small account of 1/6<110> Stair-rod, 1/2<110>perfect dislocation, and 1/3<111> Hirth dislocations. The mechanical properties of high-entropy alloys are improved by dislocation entanglement and accumulation near the grain boundary.


2022 ◽  
Vol 8 ◽  
Author(s):  
Wei Jiang ◽  
Yuntian Zhu ◽  
Yonghao Zhao

Recently, heterostructured (HS) materials, consisting of hard and soft zones with dramatically different strengths, have been developed and received extensive attention because they have been reported to exhibit superior mechanical properties over those predicted by the rule of mixtures. Due to the accumulation of geometrically necessary dislocations during plastic deformation, a back stress is developed in the soft zones to increase the yield strength of HS materials, which also induce forward stress in the hard zones, and a global hetero-deformation induced (HDI) hardening to retain ductility. High-entropy alloys (HEAs) and medium-entropy alloys (MEAs) or multicomponent alloys usually contain three or more principal elements in near-equal atomic ratios and have been widely studied in the world. This review paper first introduces concepts of HS materials and HEAs/MEAs, respectively, and then reviewed emphatically the mechanical properties and deformation mechanisms of HS HEAs/MEAs. Finally, we discuss the prospect for industrial applications of the HS HEAs and MEAs.


RSC Advances ◽  
2016 ◽  
Vol 6 (80) ◽  
pp. 76409-76419 ◽  
Author(s):  
Jia Li ◽  
QiHong Fang ◽  
Bin Liu ◽  
YouWen Liu ◽  
Yong Liu

Although a high-entropy alloy has exhibited promising mechanical properties, little attention has been given to the dynamics deformation mechanism during uniaxial tension, which limits its widespread and practical utility.


Author(s):  
Gangjie Luo ◽  
Li Li ◽  
Qihong Fang ◽  
Jia Li ◽  
Yuanyuan Tian ◽  
...  

AbstractHigh entropy alloys (HEAs) attract remarkable attention due to the excellent mechanical performance. However, the origins of their high strength and toughness compared with those of the traditional alloys are still hardly revealed. Here, using a microstructure-based constitutive model and molecular dynamics (MD) simulation, we investigate the unique mechanical behavior and microstructure evolution of FeCoCrNiCu HEAs during the indentation. Due to the interaction between the dislocation and solution, the high dislocation density in FeCoCrNiCu leads to strong work hardening. Plentiful slip systems are stimulated, leading to the good plasticity of FeCoCrNiCu. The plastic deformation of FeCoCrNiCu is basically affected by the motion of dislocation loops. The prismatic dislocation loops inside FeCoCrNiCu are formed by the dislocations with the Burgers vectors of $${a \over 6}\left[ {\bar 11\bar 2} \right]$$ a 6 [ 1 ¯ 1 2 ¯ ] and $${a \over 6}\left[ {1\bar 12} \right]$$ a 6 [ 1 1 ¯ 2 ] , which interact with each other, and then emit along the 〈111〉 slip direction. In addition, the mechanical properties of FeCoCrNiCu HEA can be predicted by constructing the microstructure-based constitutive model, which is identified according to the evolution of the dislocation density and the stress-strain curve. Strong dislocation strengthening and remarkable lattice distortion strengthening occur in the deformation process of FeCoCrNiCu, and improve the strength. Therefore, the origins of high strength and high toughness in FeCoCrNiCu HEAs come from lattice distortion strengthening and the more activable slip systems compared with Cu. These results accelerate the discovery of HEAs with excellent mechanical properties, and provide a valuable reference for the industrial application of HEAs.


2020 ◽  
Vol 2020 (4) ◽  
pp. 16-22
Author(s):  
A.I. Ustinov ◽  
◽  
V.S. Skorodzievskii ◽  
S.A. Demchenkov ◽  
S.S. Polishchuk ◽  
...  

2021 ◽  
Vol 282 ◽  
pp. 128736 ◽  
Author(s):  
Qingkai Shen ◽  
Xiangdong Kong ◽  
Xizhang Chen ◽  
Xukai Yao ◽  
Vladislav B. Deev ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document