Investigation of in situ prepared polypropylene/clay nanocomposites properties and comparing to melt blending method

2010 ◽  
Vol 31 (1) ◽  
pp. 76-84 ◽  
Author(s):  
H. Baniasadi ◽  
A. Ramazani S.A. ◽  
S. Javan Nikkhah
2011 ◽  
Vol 364 ◽  
pp. 317-321 ◽  
Author(s):  
Siti Zulaiha Hairaldin ◽  
Wan Md Zin Wan Yunus ◽  
Nor Azowa Ibrahim

In this study, Octadecylamine Modified montmorillonites (ODAMMT) were used to prepare polylactide/polycaprolactone (PLA/PCL) clay nanocomposites. PLA and PCL were blend using an internal mixer by melt blending method. The other sample was blend with natrium monmorillonite (NaMMT) and Octadecylamine modified monmorillonite to produce PLA/PCL-NaMMT and PLA/PCL-ODAMMT. To characterize the polymer nanocomposite, X-ray diffraction (XRD), FTIR and SEM analysis were conducted. Comparison of morphology were made up between neat PLA/PCL, PLA/PCL with presence of of montmorillonite and octadecylamine modified monmorillonite respectively based on SEM micrograph. The number-average diameter was calculated for PLA/PCL, PLA/PCL-NaMMT, and PLA/PCL-ODAMMT.


e-Polymers ◽  
2018 ◽  
Vol 18 (1) ◽  
pp. 91-95 ◽  
Author(s):  
Shouyun Zhang ◽  
Jinghong Ma

AbstractThis paper introduces a feasible method to improve the color value of bio-based polyamide 56 (PA56) fiber. Three types of whitening modifiers were introduced into the bio-based PA56 fibers by the in-situ polymerization method and melt blending method in order to improve the fiber color. The color values and mechanical properties of PA56 fibers were tested and analyzed and the optimum additive ratio and process conditions were discussed. The results show that the improved color value of bio-based PA56 fibers can be achieved by the melt blending method of fluorescent whitening masterbatch and reasonable spinning condition control. When the additive amount of fluorescent whitening agent is 0.3%, the index of lightness (L) increased from 84 to 90, while the yellow index (YI) reduced from 16.8 to 12.6. Moreover, PA56 fibers show high breaking strength about 4.27 cN/dtex and good yellowing resistance and durability.


e-Polymers ◽  
2010 ◽  
Vol 10 (1) ◽  
Author(s):  
Shahryar Jafari Nejad ◽  
Aboali Golzary

AbstractIn this study, polypropylene/clay nanocomposites were prepared by melt blending method and their thermal conductivity and the thermal conductivity of polypropylene/multi-wall carbon nanotube (MWCNT) nanocomposites were investigated and modeled. It is found that the thermal conductivity of the PP/Clay and PP/MWCNT nanocomposites is increased with increasing temperature. The thermal conductivity of the nanocomposites is improved due to incorporation of nanoclay and MWCNT compared with pure PP matrix


2014 ◽  
Vol 970 ◽  
pp. 312-316
Author(s):  
Sujaree Tachaphiboonsap ◽  
Kasama Jarukumjorn

Thermoplastic starch (TPS)/poly (lactic acid) (PLA) blend and thermoplastic starch (TPS)/poly (lactic acid) (PLA)/poly (butylene adipate-co-terephthalate) (PBAT) blend were prepared by melt blending method. PLA grafted with maleic anhydride (PLA-g-MA) was used as a compatibilizer to improve the compatibility of the blends. As TPS was incorporated into PLA, elongation at break was increased while tensile strength, tensile modulus, and impact strength were decreased. Tensile properties and impact properties of TPS/PLA blend were improved with adding PLA-g-MA indicating the enhancement of interfacial adhesion between PLA and TPS. With increasing PBAT content, elongation at break and impact strength of TPS/PLA blends were improved. The addition of TPS decreased glass transition temperature (Tg), crystallization temperature (Tc), and melting temperature (Tm) of PLA. Tgand Tcof TPS/PLA blend were decreased by incorporating PLA-g-MA. However, the presence of PBAT reduced Tcof TPS/PLA blend. Thermal properties of TPS/PLA/PBAT blends did not change with increasing PBAT content. SEM micrographs revealed that the compatibilized TPS/PLA blends exhibited finer morphology when compared to the uncompatibilized TPS/PLA blend.


2011 ◽  
Vol 49 (19) ◽  
pp. 4213-4220 ◽  
Author(s):  
Kubra Dogan Demir ◽  
Mehmet Atilla Tasdelen ◽  
Tamer Uyar ◽  
Asei William Kawaguchi ◽  
Atsushi Sudo ◽  
...  

2013 ◽  
Vol 785-786 ◽  
pp. 123-126
Author(s):  
Ying Ye ◽  
Kun Yan Wang ◽  
Ge Chang ◽  
Qian Ying Jiang

Polypropylene/organoclay modified by dodecanol phase change material were prepared by melt blending method. The thermal stability and crystallization behavior was studied by thermogravimetry (TG), differential scanning calorimetry (DSC), and X-ray diffraction (XRD). TG results indicated the window of processing of PP could be improved by adding small amount organoclay modified by dodecanol to the blend. DSC showed the organoclay modified by dodecanol affected the crystallization behavior of PP as heterogeneous nucleation agent. XRD results show that the organoclay modified by dodecanol does not change the crystal structure in the blends but only decrease the intensity of the diffraction peak.


2018 ◽  
Vol 32 (5) ◽  
pp. 710-726 ◽  
Author(s):  
Li Dang ◽  
Xueying Nai ◽  
Xin Liu ◽  
Zhihui Lv ◽  
Wu Li

Polypropylene (PP) composites containing magnesium oxysulfate particle (MOSp), magnesium oxysulfate whisker (MOSw), or magnesium oxysulfate sector (MOSs) were prepared via melt blending method. Scanning electron microscopy results showed that three magnesium oxysulfate (MOS) fillers all dispersed homogeneously in PP matrix and displayed vague and fuzzy interfaces. Wide-angle X-ray diffraction (WXRD) patterns showed that MOSp induced the most amount of β-PP, which was supported by polarized light microscopy (PLM) photographs. Moreover, PLM photographs also showed that the presence of MOSp, MOSw, or MOSw decreased the PP spherulites, especially for MOSp. As such, mechanical tests showed that incorporation of MOSp into PP matrix greatly improved the impact strength and least lowered the nominal strain at break. The yield strength and Young’s modulus of composites were greatly enhanced with MOSw. Two possible reasons for this phenomenon are rigidity of MOSw and microstructure of composites. Rheological properties were measured via small amplitude oscillatory shear. The results showed that PP melts containing MOSw exhibited significant yield stress and “shear-thinning” behaviors, which indicated the formation of MOSw network and the transition from “liquid-like” PP matrix to “solid-like” composites. The rheological results greatly proved the enhancement in tensile properties of MOSw-incorporated composites.


2008 ◽  
Vol 41 (16) ◽  
pp. 6035-6040 ◽  
Author(s):  
Mehmet Atilla Tasdelen ◽  
Wim Van Camp ◽  
Eric Goethals ◽  
Philippe Dubois ◽  
Filip Du Prez ◽  
...  

Nanomaterials ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 969
Author(s):  
Sonia Bujok ◽  
Jiří Hodan ◽  
Hynek Beneš

The high capacity of calcinated layered double hydroxides (LDH) to immobilize various active molecules together with their inherent gas/vapor impermeability make these nanoparticles highly promising to be applied as nanofillers for biodegradable polyester packaging. Herein, trihexyl(tetradecyl)phosphonium decanoate ionic liquid (IL) was immobilized on the surface of calcinated LDH. Thus, the synthesized nanoparticles were used for the preparation of polycaprolactone (PCL)/LDH nanocomposites. Two different methods of nanocomposite preparation were used and compared: microwave-assisted in situ ring opening polymerization (ROP) of ε-caprolactone (εCL) and melt-blending. The in situ ROP of εCL in the presence of LDH nanoparticles with the immobilized IL led to homogenous nanofiller dispersion in the PCL matrix promoting formation of large PCL crystallites, which resulted in the improved mechanical, thermal and gas/water vapor barrier properties of the final nanocomposite. The surface-bonded IL thus acted as nanofiller surfactant, compatibilizer, as well as thermal stabilizer of the PCL/LDH nanocomposites. Contrary to that, the melt-blending caused a partial degradation of the immobilized IL and led to the production of PCL nanocomposites with a heterogenous nanofiller dispersion having inferior mechanical and gas/water vapor barrier properties.


2018 ◽  
Vol 913 ◽  
pp. 729-737
Author(s):  
Hui Ling Xu ◽  
Hong Kun Bao ◽  
Chao Sheng Wang ◽  
Hua Ping Wang

Poly(ethylene terephthalate) (PET) fiber with excellent flame retardant property was prepared with introducing a containing phosphorus flame retardant 10-(2’,5’-dihydroxyphenyl) -9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (ODOPB) into PET by melt blending method. The intrinsic viscosity of the modified PET was decreased after melt blending, indicated that ODOPB could promote the degradation of PET. The addition of ODOPB can increase the amount of carbon residue of PET, which can effectively reduce the heat transfer. The movement and regularity of PET molecular chain are affected by ODOPB, resulting in the reducing of the crystallization of PET. The Raman curves indicate that the addition of ODOPB can improve the regularity of carbon layer, which is conducive to achieve the effect of flame retardant. When the mass fraction of P is 0.7 %, the limiting oxygen index of sample reaches 32.4% and UL-94 vertical reaches V-2, the fiber fracture strength is 2.6 cN/dtex, which has excellent flame retardant and mechanical properties.


Sign in / Sign up

Export Citation Format

Share Document