Effect of fiber loading on mechanical and morphological properties of cocoa pod husk fibers reinforced thermoplastic polyurethane composites

2014 ◽  
Vol 64 ◽  
pp. 330-333 ◽  
Author(s):  
Y.A. El-Shekeil ◽  
S.M. Sapuan ◽  
M.W. Algrafi
2014 ◽  
Vol 606 ◽  
pp. 25-28 ◽  
Author(s):  
Y.A. El-Shekeil ◽  
S.M. Sapuan ◽  
M. Haron

In this study, cocoa (Theobroma cacao) pod husk (CPH) fiber reinforced themoplastic polyurethane (TPU) was prepared by melt blending method using Haake Polydrive R600 internal mixer. The composites were prepared with different fiber loading: 20%, 30% and 40% (by weight), with the optimum processing parameters: 190°C, 11 min, and 40 rpm for temperature, time and speed, respectively. Five samples were cut from the composite sheet. Mean value was taken for each composite according to ASTM standards. Increase of fibre loading showed increase in tensile strength and modulus and decreasing trend of strain.


2014 ◽  
Vol 564 ◽  
pp. 346-349 ◽  
Author(s):  
Y.A. El-Shekeil ◽  
S.M. Sapuan ◽  
M. Haron

In this study, cocoa (Theobroma cacao) pod husk (CPH) fiber reinforced themoplastic polyurethane (TPU) was prepared by melt blending method using Haake Polydrive R600 internal mixer. The composites were prepared with different fiber loading: 20%, 30% and 40% (by weight), with the optimum processing parameters: 190°C, 11 min, and 40 rpm for temperature, time and speed, respectively. Five samples were cut from the composite sheet. Mean value was taken for each composite according to ASTM standards. Increase of fibre loading showed increase in tensile strength and modulus and decreasing trend of strain.


2018 ◽  
Vol 773 ◽  
pp. 77-81
Author(s):  
Warrayut Kanabenja ◽  
Pranut Potiyaraj

Thermoplastic polyurethane/graphene nanocomposites were successfully prepared by mixing masterbatches with neat polymers using the melt compounding process. Graphene was obtained from graphite by the chemical mean. Graphite was initially converted into graphite oxide which was then converted to graphene oxide. Graphene oxide was then reduced by L-ascorbic acid to obtain graphene. The effects of graphene addition on thermal and morphological properties of nanocomposite were studied by a differential scanning calorimeter, a thermal gravimetric analyzer and a scanning electron microscope. TPU/graphene nanocomposites showed higher melting temperature compared to TPU. On the other hand, heat of fusion of nanocomposites was lowered. TPU and TPU/graphene nanocomposites have two steps of decomposition. The first degradation of TPU occurred at higher temperature compared with nanocomposites but the second degradation showed the opposite results. The percentage of residue after thermal degradation of nanocomposites was lower than that of TPU. For surface morphology, nanocomposite exhibited the rougher surface comparing with TPU and well graphene dispersion in TPU phase was achieved. Nevertheless, there were some agglomeration of graphene.


2014 ◽  
Vol 564 ◽  
pp. 394-399 ◽  
Author(s):  
Y.A. El-Shekeil ◽  
S.M. Sapuan ◽  
M. Haron

A composite of cocoa (Theobroma cacao) pod husk (CPH) fiber reinforced themoplastic polyurethane (TPU) was prepared by melt-blending method followed by compression moulding. Specimens were cut from the sheets that were prepared by compression moulding. The criteria of optimization was testing the specimens by tensile test and comparing the ultimate tensile strength. The aim of this study is to optimize processing parameters and fiber loading using Taguchi approach. These four parameters were investigated in three levels each. The L9 orthogonal array was used based on the number of parameters and levels that have been selected. Furthermore ANOVA was used to determine the significance of parameters. The processing parameters chosen for this study were temperature, speed and time of processing and fiber content. The results showed that optimum values were 190°C, 40 rpm, 11min and 30% for processing temperature, processing speed, processing time and fiber content; respectively. Using ANOVA; fiber content showed the highest significance value followed by processing time. Processing temperature and speed showed no significance in the optimization of TPU/CPH.


Polymers ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1282
Author(s):  
M.J. Suriani ◽  
Fathin Sakinah Mohd Radzi ◽  
R.A. Ilyas ◽  
Michal Petrů ◽  
S.M. Sapuan ◽  
...  

Oil palm empty fruit bunches (OPEFB) fiber is a natural fiber that possesses many advantages, such as biodegradability, eco-friendly, and renewable nature. The effect of the OPEFB fiber loading reinforced fire retardant epoxy composites on flammability and tensile properties of the polymer biocomposites were investigated. The tests were carried out with four parameters, which were specimen A (constant), specimen B (20% of fiber), specimen C (35% of fiber), and specimen D (50% of fiber). The PET yarn and magnesium hydroxide were used as the reinforcement material and fire retardant agent, respectively. The results were obtained from several tests, which were the horizontal burning test, tensile test, and scanning electron microscopy (SEM). The result for the burning test showed that specimen B exhibited better flammability properties, which had the lowest average burning rate (11.47 mm/min). From the tensile strength, specimen A revealed the highest value of 10.79 N/mm2. For the SEM morphological test, increasing defects on the surface ruptured were observed that resulted in decreased tensile properties of the composites. It can be summarized that the flammability and tensile properties of OPEFB fiber reinforced fire retardant epoxy composites were reduced when the fiber volume contents were increased at the optimal loading of 20%, with the values of 11.47 mm/min and 4.29 KPa, respectively.


Polymers ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1837
Author(s):  
Alessandro Nanni ◽  
Mariafederica Parisi ◽  
Martino Colonna ◽  
Massimo Messori

The present work investigated the possibility to use wet blue (WB) leather wastes as natural reinforcing fibers within different polymer matrices. After their preparation and characterization, WB fibers were melt-mixed at 10 wt.% with poly(lactic acid) (PLA), polyamide 12 (PA12), thermoplastic elastomer (TPE), and thermoplastic polyurethane (TPU), and the obtained samples were subjected to rheological, thermal, thermo-mechanical, and viscoelastic analyses. In parallel, morphological properties such as fiber distribution and dispersion, fiber–matrix adhesion, and fiber exfoliation phenomena were analyzed through a scanning electron microscope (SEM) and energy-dispersive spectroscopy (EDS) to evaluate the relationship between the compounding process, mechanical responses, and morphological parameters. The PLA-based composite exhibited the best results since the Young modulus (+18%), tensile strength (+1.5%), impact (+10%), and creep (+5%) resistance were simultaneously enhanced by the addition of WB fibers, which were well dispersed and distributed in and significantly branched and interlocked with the polymer matrix. PA12- and TPU-based formulations showed a positive behavior (around +47% of the Young modulus and +40% of creep resistance) even if the not-optimal fiber–matrix adhesion and/or the poor de-fibration of WB slightly lowered the tensile strength and elongation at break. Finally, the TPE-based sample exhibited the worst performance because of the poor affinity between hydrophilic WB fibers and the hydrophobic polymer matrix.


2012 ◽  
Vol 584 ◽  
pp. 361-365 ◽  
Author(s):  
Baralu Jagannatha Rashmi ◽  
Daniela Rusu ◽  
Kalappa Prashantha ◽  
Marie France Lacrampe ◽  
Patricia Krawczak

Water blown biobased thermoplastic polyurethane (TPU) foams were prepared using synthetic and biobased chain extender. The concentration of chain extender, blowing agent (BA) and surfactant were varied and their effects on physical, mechanical and morphological properties of foams were investigated. Density, compressive strength and modulus of foams decreases with an increase in BA content and increased with chain extender concentration, but do not change significantly with change in surfactant concentration. The glass-transition temperatures of the foam samples increases with an increase in BA and chain extender concentration. The cell size of the foam sample increases slightly with an increase in BA whereas chain extender concentration has no effect on cell size.


Sign in / Sign up

Export Citation Format

Share Document