scholarly journals Achieving high strength and ductility in nitrogen-doped refractory high-entropy alloys

2021 ◽  
pp. 110356
Author(s):  
Ruixin Wang ◽  
Yu Tang ◽  
Zhifeng Lei ◽  
Yuanlin Ai ◽  
Zhixing Tong ◽  
...  
2019 ◽  
Vol 767 ◽  
pp. 138394 ◽  
Author(s):  
Xigang Yang ◽  
Yun Zhou ◽  
Shengqi Xi ◽  
Zhen Chen ◽  
Pei Wei ◽  
...  

2019 ◽  
Vol 173 ◽  
pp. 149-153 ◽  
Author(s):  
Z.H. Cao ◽  
Y.J. Ma ◽  
Y.P. Cai ◽  
G.J. Wang ◽  
X.K. Meng

2019 ◽  
Vol 162 ◽  
pp. 24-33 ◽  
Author(s):  
Yu Yin ◽  
Jingqi Zhang ◽  
Qiyang Tan ◽  
Wyman Zhuang ◽  
Ning Mo ◽  
...  

Entropy ◽  
2019 ◽  
Vol 21 (4) ◽  
pp. 389 ◽  
Author(s):  
Hanwen Zhang ◽  
Peizhi Liu ◽  
Jinxiong Hou ◽  
Junwei Qiao ◽  
Yucheng Wu

The mechanical behavior of a partially recrystallized fcc-CoCrFeNiTi0.2 high entropy alloys (HEA) is investigated. Temporal evolutions of the morphology, size, and volume fraction of the nanoscaled L12-(Ni,Co)3Ti precipitates at 800 °C with various aging time were quantitatively evaluated. The ultimate tensile strength can be greatly improved to ~1200 MPa, accompanied with a tensile elongation of ~20% after precipitation. The temporal exponents for the average size and number density of precipitates reasonably conform the predictions by the PV model. A composite model was proposed to describe the plastic strain of the current HEA. As a consequence, the tensile strength and tensile elongation are well predicted, which is in accord with the experimental results. The present experiment provides a theoretical reference for the strengthening of partially recrystallized single-phase HEAs in the future.


2021 ◽  
pp. 117571
Author(s):  
Daixiu Wei ◽  
Liqiang Wang ◽  
Yongjie Zhang ◽  
Wu Gong ◽  
Tomohito Tsuru ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document