Surface modification of superparamagnetic iron nanoparticles with calcium salt of poly(γ-glutamic acid) as coating material

2010 ◽  
Vol 45 (11) ◽  
pp. 1603-1607 ◽  
Author(s):  
Ramesh Kumar ◽  
B. Stephen Inbaraj ◽  
B.H. Chen
2020 ◽  
Vol 26 (41) ◽  
pp. 5347-5352
Author(s):  
Guoliang Wang ◽  
Qing Liu ◽  
Ying Wang ◽  
Jingyuan Li ◽  
Yue Chen ◽  
...  

γ-Poly-glutamic acid (γ-PGA) is a naturally occurring homo-polyamide produced by various strains of Bacillus. As a biopolymer substance, γ-PGA possesses a few predominant features containing good water solubility, biocompatibility, degradability and non-toxicity. Based on this, γ-PGA can be used in pharmaceutical, such as drug carrier/deliverer, vaccine adjuvant, and coating material for microencapsulation, etc. Moreover, it has also been applied in a broad range of industrial fields including food, medicine, bioremediation, cosmetics, and agriculture. Especially, γ-PGA is an extremely promising food ingredient. In this mini-review, our aim is to review the function and application progress of γ-PGA in the food industry: e.g., improving taste and flavor, enhancing physical property, and promoting health.


2019 ◽  
Vol 6 (4) ◽  
pp. 231-240 ◽  
Author(s):  
Günnur Onak ◽  
Ozan Karaman

Abstract Surface modification by non-thermal atmospheric plasma (NTAP) treatment can produce significantly higher carboxylic groups on the nanofibers (NF) surface, which potentially can increase biomineralization of NF via promoting glutamic acid (GLU) templated peptide conjugation. Herein, electrospun poly(lactide-co-glycolide) (PLGA) scaffolds were treated with NTAP and conjugated with GLU peptide followed by incubation in simulated body fluids for mineralization. The effect of NTAP treatment and GLU peptide conjugation on mineralization, surface wettability and roughness were investigated. The results showed that NTAP treatment significantly increased GLU peptide conjugation which consequently enhanced mineralization and mechanical properties of NTAP treated and peptide conjugated NF (GLU-pNF) compared to neat PLGA NF, NTAP treated NF (pNF) and GLU peptide conjugated NF (GLU-NF). The effect of surface modification on human bone marrow derived mesenchymal stem cells adhesion, proliferation and morphology was evaluated by cell proliferation assay and fluorescent microscopy. Results demonstrated that cellular adhesion and proliferation were significantly higher on GLU-pNF compared to NF, pNF and GLU-NF. In summary, NTAP treatment could be a promising modification technique to induce biomimetic peptide conjugation and biomineralization for bone tissue engineering applications.


2019 ◽  
Vol 168 (1) ◽  
pp. 48-51
Author(s):  
A. V. Kiselev ◽  
A. S. Vedenkin ◽  
I. S. Stovbun ◽  
V. I. Sergienko ◽  
T. S. Kalinina

Sign in / Sign up

Export Citation Format

Share Document