Synthesis of Co-doped barium strontium titanate nanofibers by sol–gel/electrospinning process

2012 ◽  
Vol 75 ◽  
pp. 207-210 ◽  
Author(s):  
Bin Li ◽  
Chunqing Wang ◽  
Wei Liu ◽  
Ying Zhong ◽  
Rong An
2019 ◽  
Vol 16 (1) ◽  
pp. 65
Author(s):  
Rahmi Dewi ◽  
Tiara Pertiwi ◽  
Krisman Krisman

The thin film of Barium Strontium Titanate (BST) has been studied withcomposition ofby using sol-gel method that annealed in temperature of 600oC and 650oC. The thin film of BST is characterized by using Field Emission Scanning Electron Microscopy (FESEM) and an impedance spectroscopy. The results of  FESEM characterization for samples in temperature of 600oC and 650oC are 55.83 nm and 84.88 nm in thickness respectively. The result of impedance spectroscopy characterization given frequency values obtained by the impedance value of real and imaginary.The capacitance value at a frequency of 20 Hz from a thin film of BST in temperature of 600oC and 650oC are 69.36Fand138.70F. The dielectric constant of the thin film of BST in temperature of 600oC and 650oC are 22.17 dan 131.56 respectively.


2007 ◽  
Vol 0 (0) ◽  
pp. 070922001254006-???
Author(s):  
Bo Li ◽  
Jinqing Wang ◽  
Ming Fu ◽  
Ji Zhou ◽  
Mokoto Kuwabara

2010 ◽  
Vol 152-153 ◽  
pp. 1013-1016
Author(s):  
Hong Wang ◽  
Jing Yang

Nanometer barium-strontium titanate based coated aluminum oxide (ABST) was prepared by the sol–gel method and characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and Fourier transform infrared spectrophotometry (FTIR). Its application in speciation of Cr(III) and Cr(VI) from water were studied. The results showed that the nanometer barium-strontium titanate was immobilized on aluminum oxide firmly, becoming a new adsorbent. Two forms of chromium showed different exchange capacities at different pH values, viz. Cr (III) selectively retained at pH 10–13, whereas Cr (VI) retained at pH 1. Hence complete separation of the two forms of chromium is possible. Retained species were eluted with 5mL of 1 mol•L−1 HCl and 1 mol•L−1 NaOH. The Cr(III) and Cr(VI) concentration was measured by atomic absorption spectroscopy. The adsorbent had a promising prospect in the separation of Cr(III) and Cr(VI) in environment water.


Sign in / Sign up

Export Citation Format

Share Document