Microstructure and Corrosion Resistance of Ni-Cu Alloy Fabricated through Wire Arc Additive Manufacturing

2021 ◽  
pp. 131262
Author(s):  
A. Rajesh Kannan ◽  
S. Mohan Kumar ◽  
R. Pramod ◽  
N. Siva Shanmugam ◽  
M. Vishnukumar ◽  
...  
Metals ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 888 ◽  
Author(s):  
Ron ◽  
Levy ◽  
Dolev ◽  
Leon ◽  
Shirizly ◽  
...  

: Current additive manufacturing (AM) processes are mainly focused on powder bed technologies, such as electron beam melting (EBM) and selective laser melting (SLM). However, the main disadvantages of such techniques are related to the high cost of metal powder, the degree of energy consumption, and the sizes of the components, that are limited by the size of the printing cell. The aim of the present study was to evaluate the environmental behavior of low carbon steel (ER70S-6) produced by a relatively inexpensive AM process using wire feed arc welding. The mechanical properties were examined by tension testing and hardness measurements, while microstructure was assessed by scanning electron microscopy and X-ray diffraction analysis. General corrosion performance was evaluated by salt spray testing, immersion testing, potentiodynamic polarization analysis, and electrochemical impedance spectroscopy. Stress corrosion performance was characterized in terms of slow strain rate testing (SSRT). All corrosion tests were carried out in 3.5% NaCl solution at room temperature. The results indicated that the general corrosion resistance of wire arc additive manufacturing (WAAM) samples were quite similar to those of the counterpart ST-37 steel and the stress corrosion resistance of both alloys was adequate. Altogether, it was clearly evident that the WAAM process did not encounter any deterioration in corrosion performance compared to its conventional wrought alloy counterpart.


2020 ◽  
pp. 101663
Author(s):  
Thomas Klein ◽  
Martin Schnall ◽  
Bianca Gomes ◽  
Piotr Warczok ◽  
Dominik Fleischhacker ◽  
...  

2018 ◽  
Vol 8 (8) ◽  
pp. 1306 ◽  
Author(s):  
Seungkyu Han ◽  
Matthew Zielewski ◽  
David Martinez Holguin ◽  
Monica Michel Parra ◽  
Namsoo Kim

Progress on Additive Manufacturing (AM) techniques focusing on ceramics and polymers evolves, as metals continue to be a challenging material to manipulate when fabricating products. Current methods, such as Selective Laser Sintering (SLS) and Electron Beam Melting (EBM), face many intrinsic limitations due to the nature of their processes. Material selection, elevated cost, and low deposition rates are some of the barriers to consider when one of these methods is to be used for the fabrication of engineering products. The research presented demonstrates the use of a Wire and Arc Additive Manufacturing (WAAM) system for the creation of metallic specimens. This project explored the feasibility of fabricating elements made from magnesium alloys with the potential to be used in biomedical applications. It is known that the elastic modulus of magnesium closely approximates that of natural bone than other metals. Thus, stress shielding phenomena can be reduced. Furthermore, the decomposition of magnesium shows no harm inside the human body since it is an essential element in the body and its decomposition products can be easily excreted through the urine. By alloying magnesium with aluminum and zinc, or rare earths such as yttrium, neodymium, cerium, and dysprosium, the structural integrity of specimens inside the human body can be assured. However, the in vivo corrosion rates of these products can be accelerated by the presence of impurities, voids, or segregation created during the manufacturing process. Fast corrosion rates would produce improper healing, which, in turn, involve subsequent surgical intervention. However, in this study, it has been proven that magnesium alloy AZ91D produced by WAAM has higher corrosion resistance than the cast AZ91D. Due to its structure, which has porosity or cracking only at the surface of the individual printed lines, the central sections present a void-less structure composed by an HCP magnesium matrix and a high density of well dispersed aluminum-zinc rich precipitates. Also, specimens created under different conditions have been analyzed in the macroscale and microscale to determine the parameters that yield the best visual and microstructural results.


2020 ◽  
Vol 36 ◽  
pp. 101447
Author(s):  
Bolun Dong ◽  
Xiaoyu Cai ◽  
Sanbao Lin ◽  
Xiaolong Li ◽  
Chenglei Fan ◽  
...  

Crystals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1401
Author(s):  
Qingxian Hu ◽  
Xiaoli Wang ◽  
Xinwang Shen ◽  
Zemin Tan

The microstructure and corrosion resistance of samples fabricated by Q345 and 308 bimetallic feedings using two kinds of processes of wire-arc additive manufacturing (WAAM) was observed and compared with that of sample manufactured by a single feeding wire of Q345 or 308. The results show that the interface between the Q345 and 308 had no defects and metallurgical bonding. The hardness of bimetal Q345/308 additive manufacturing samples was higher than that of Q345 or 308 single wire additive manufacturing. The sample made of Q345 single wire had serious electrochemical corrosion, while the sample made of 308 single wire had pitting corrosion. The pitting corrosion of the sample reinforced by bimetal Q345/308 feeding wires was improved.


Sign in / Sign up

Export Citation Format

Share Document