Evolution of microstructure and mechanical properties of D2 tool steel during annealing heat treatment

2018 ◽  
Vol 5 (1) ◽  
pp. 2733-2737 ◽  
Author(s):  
G. Ramesh ◽  
R. Rahul ◽  
M. Pradeep ◽  
P. Sreehari ◽  
S. Ramesh Kumar
2020 ◽  
Vol 9 (1) ◽  
pp. 580-595 ◽  
Author(s):  
Yali Zhang ◽  
Xiaosong Jiang ◽  
Hongliang Sun ◽  
Zhenyi Shao

AbstractIn this study, nonequiatomic Co28.5Cr21.5Fe20Ni26Mo4 medium-entropy alloys (MEAs) were prepared using hot isostatic pressing. The effect of annealing heat treatment on microstructure and mechanical properties of MEAs was investigated. The results showed that the microstructure of as-sintered alloys was mainly composed of the face-centered cubic (FCC) phase and μ phase. The presence of the μ phase could improve the compressive strength of Co28.5Cr21.5Fe20Ni26Mo4 MEAs. Meanwhile, the ductile FCC phase matrix could effectively suppress the propagation of cracks to improve its ductility. Hence, as-sintered MEAs possessed excellent compression properties, and the average compressive strength value was 2,606 MPa when the strain was 50%. Compared with as-sintered MEAs, the phase composition of as-annealed MEAs did not change. The micro-hardness of annealed MEAs was stable compared to as-sintered MEAs (342 HV), and its fluctuation was about ±30 HV. The compressive strength of the annealed MEAs did not alter greatly, and the maximum fluctuation value was only about 6.5%. Hence, Co28.5Cr21.5Fe20Ni26Mo4 MEAs had excellent thermal stability.


2013 ◽  
Vol 765 ◽  
pp. 511-515 ◽  
Author(s):  
Da Quan Li ◽  
Xiao Kang Liang ◽  
Fu Bao Yang ◽  
You Feng He ◽  
Fan Zhang ◽  
...  

The evolution of microstructure and mechanical properties during solution and ageing heat treatment process was studied in terms of a thixo-diecast impeller of 319s aluminium alloy. The cast alloy exhibited a microstructure consisting of primary uniformly distributed in α-Al globules and the eutectics. A series of heat treatment studies were performed to determine optimum heat treatment parameters, in order to achieve fine grain structure, fine silicon particles and optimal precipitate size and distribution. Optical microscopy (OM), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were employed to study the evolution of microstructure and mechanical properties. The results demonstrate that, the full T6 heat treatments are successfully applied to thixo-diecast 319s impellers. A two-step solution heat treatment is employed to prevent porosity due to overheating. The tensile properties of thixo-diecast 319s impellers were substantially enhanced after T6 heat treatment. The plate-shaped θ′ precipitates and lath-shaped Q′ precipitates are the most effective for precipitation strengthening.


Metals ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 753 ◽  
Author(s):  
Kanwal Chadha ◽  
Yuan Tian ◽  
John Spray ◽  
Clodualdo Aranas

In this work, the microstructural features and mechanical properties of an additively manufactured 316L stainless steel have been determined. Three types of samples were characterized: (i) as printed (AP), (ii) annealing heat treated (AHT), and (iii) hot isostatic pressed and annealing heat treated (HIP + AHT). Microstructural analysis reveals that the AP sample formed melt pool boundaries with nano-scale cellular structures. These structures disappeared after annealing heat treatment and hot isostatic pressing. The AP and AHT samples have similar grain morphologies; however, the latter has a lower dislocation density and contains precipitates. Conversely, the HIP + AHT sample displays polygon-shaped grains with twin structures; a completely different morphology compared to the first two samples. Optical micrography reveals that the application of hot isostatic pressing reduces the porosity generated after laser processing. The tensile strengths of all the samples are comparable (about 600 MPa); however, the elongation of the HIP + AHT sample (48%) was superior to that of other two samples. The enhanced ductility of the HIP + AHT sample, however, resulted in lower yield strength. Based on these findings, annealing heat treatment after hot isostatic pressing was found to improve the ductility of as-printed 316L stainless steel by as much as 130%, without sacrificing tensile strength, but the sample may have a reduced (40%) yield strength. The tensile strength determined here has been shown to be higher than that of the hot isostatic pressed, additively manufactured 316L stainless steel available from the literature.


Sign in / Sign up

Export Citation Format

Share Document