Electrophoretic deposition of graphene oxide on plasma electrolytic oxidized-magnesium implants for bone tissue engineering applications

2018 ◽  
Vol 5 (7) ◽  
pp. 15603-15612 ◽  
Author(s):  
Aidin Bordbar Khiabani ◽  
Sina Rahimi ◽  
Benyamin Yarmand ◽  
Masoud Mozafari
Nanomaterials ◽  
2019 ◽  
Vol 9 (4) ◽  
pp. 590 ◽  
Author(s):  
Yuchao Li ◽  
Chengzhu Liao ◽  
Sie Chin Tjong

This paper provides review updates on the current development of bionanocomposites with polymeric matrices consisting of synthetic biodegradable aliphatic polyesters reinforced with nanohydroxyaptite (nHA) and/or graphene oxide (GO) nanofillers for bone tissue engineering applications. Biodegradable aliphatic polyesters include poly(lactic acid) (PLA), polycaprolactone (PCL) and copolymers of PLA-PGA (PLGA). Those bionanocomposites have been explored for making 3D porous scaffolds for the repair of bone defects since nHA and GO enhance their bioactivity and biocompatibility by promoting biomineralization, bone cell adhesion, proliferation and differentiation, thus facilitating new bone tissue formation upon implantation. The incorporation of nHA or GO into aliphatic polyester scaffolds also improves their mechanical strength greatly, especially hybrid GO/nHA nanofilllers. Those mechanically strong nanocomposite scaffolds can support and promote cell attachment for tissue growth. Porous scaffolds fabricated from conventional porogen leaching, and thermally induced phase separation have many drawbacks inducing the use of organic solvents, poor control of pore shape and pore interconnectivity, while electrospinning mats exhibit small pores that limit cell infiltration and tissue ingrowth. Recent advancement of 3D additive manufacturing allows the production of aliphatic polyester nanocomposite scaffolds with precisely controlled pore geometries and large pores for the cell attachment, growth, and differentiation in vitro, and the new bone formation in vivo.


RSC Advances ◽  
2018 ◽  
Vol 8 (56) ◽  
pp. 31911-31923 ◽  
Author(s):  
Xiansheng Ren ◽  
Qinyi Liu ◽  
Shuang Zheng ◽  
Jiaqi Zhu ◽  
Zhiping Qi ◽  
...  

One of the goals of bone tissue engineering is to create scaffolds with excellent biocompatibility, osteoinductive ability and mechanical properties.


2010 ◽  
Vol 19 (4) ◽  
pp. 096369351001900 ◽  
Author(s):  
A. Hamlekhan ◽  
M. Mozafari ◽  
N. Nezafati ◽  
M. Azami ◽  
H. Hadipour

In this study, poly(∊-caprolactone) (PCL), gelatin (GEL) and nanocrystalline hydroxyapatite (HAp) was applied to fabricate novel PCL-GEL-HAp nanaocomposite scaffolds through a new fabrication method. With the aim of finding the best fabrication method, after testing different methods and solvents, the best method and solvents were found, and the nanocomposites were prepared through layer solvent casting combined with freeze-drying. Acetone and distillated water were used as the PCL and GEL solvents, respectively. The mechanical test showed that the increasing of the PCL weight through the scaffolds caused the improvement of the final nanocomposite mechanical behavior due to the increasing of the ultimate stress, stiffness and elastic modulus (8 MPa for 0% wt PCL to 23.5 MPa for 50% wt PCL). The biomineralization investigation of the scaffolds revealed the formation of bone-like apatite layers after immersion in simulated body fluid (SBF). In addition, the in vitro cytotoxity of the scaffolds using L929 mouse fibroblast cell line (ATCC) indicated no sign of toxicity. These results indicated that the fabricated scaffold possesses the prerequisites for bone tissue engineering applications.


Sign in / Sign up

Export Citation Format

Share Document