Processing Of Glass Fiber Pultruded Composites Using Graphene Nanoplatelets Modified Epoxy Matrix

2019 ◽  
Vol 18 ◽  
pp. 3298-3304 ◽  
Author(s):  
Mihir Ojha ◽  
Pavan Kumar Penumakala ◽  
Gayatri Vineela Marrivada ◽  
Phaneendra Kiran Chaganti ◽  
Amit Kumar Gupta
2012 ◽  
Vol 31 (6) ◽  
pp. 785-791 ◽  
Author(s):  
Dania Olmos ◽  
José María Arroyo ◽  
Javier González-Benito

Author(s):  
Georgel MIHU ◽  
Claudia Veronica UNGUREANU ◽  
Vasile BRIA ◽  
Marina BUNEA ◽  
Rodica CHIHAI PEȚU ◽  
...  

Epoxy resins have been presenting a lot of scientific and technical interests and organic modified epoxy resins have recently receiving a great deal of attention. For obtaining the composite materials with good mechanical proprieties, a large variety of organic modification agents were used. For this study gluten and gelatin had been used as modifying agents thinking that their dispersion inside the polymer could increase the polymer biocompatibility. Equal amounts of the proteins were milled together and the obtained compound was used to form 1 to 5% weight ratios organic agents modified epoxy materials. To highlight the effect of these proteins in epoxy matrix mechanical tests as three-point bending and compression were performed.


Author(s):  
Iurii Burda ◽  
Michel Barbezat ◽  
Andreas J Brunner

Glass-fiber reinforced polymer (GFRP) composite rods with epoxy matrix filled with electrically nonconducting particles find widespread use in high-voltage electrical insulator applications. The service loads require a range of different, minimum material property values, e.g. toughness, tensile, or compressive strength, but also component-specific performance, e.g. pull-out friction of surface crimped metal fittings or electric breakdown strength. The contribution discusses selected examples of the effects of different particle filler types on the properties of filled epoxy resin as well as on the behavior of GFRP rods with such a matrix. In all investigated systems CaCO3 was used as micron-sized filler, complemented by different amounts of either nanosilica or core-shell rubber (binary filler), or by both, nanosilica and core-shell rubber (ternary filler). With ternary filler combinations at a content of 36 wt%, fracture toughness GIC was improved in nanocomposite epoxy plates and in GFRP rods by 60% and 100%, respectively compared to a matrix with 20 wt% CaCO3 (used as reference system). The glass transition temperature Tg for some ternary systems dropped from 160 °C (for neat epoxy), to approximately 140 °C, the maximum allowed drop in Tg in view of requirements from further processing steps of the electrically insulating components. The ternary fillers yield transfer of the improvements of fracture properties from epoxy nanocomposite plates into the GFRP rods beyond that of the system with CaCO3 filler only. Compressive strength of the GFRP rods was improved by about 20% only for the binary nanosilica and CaCO3 filler, and was not significantly enhanced with the ternary systems. That combination, however, did not yield improvements in toughness beyond the CaCO3-filled nanocomposite plates and rods. With the range of filler types and contents investigated here, it was hence not possible to simultaneously optimize both, fracture toughness and compressive strength of the GFRP insulator rods.


2016 ◽  
Vol 51 (11) ◽  
pp. 1573-1581 ◽  
Author(s):  
Somayeh Safi ◽  
Ali Zadhoush ◽  
Mahmood Masoomi

The performance of a composite material system depends critically on the interfacial characteristics of the reinforcement and the matrix material. In this study, the interfacial adhesion was tailored by the creation of textures on the glass fiber surface using inorganic-organic silane blends. A single-fiber microdroplet test was conducted to assess the interfacial properties between the textured glass surface and an epoxy matrix. The load–displacement curves from microdroplet tests were analyzed. The stress-based and energy-based micromechanic models of interfacial debonding and corresponding adhesional parameters (apparent and ultimate interfacial shear strength, friction stress, critical energy release rate, work of adhesion, and adhesional pressure) were applied for theoretical calculations. The results showed a clear trend for the impact of different silane blends on the interfacial properties. The specimens containing 75:25 and 50:50 of inorganic–organic silane blends show the most effective improvement in the interfacial adhesion properties between glass fiber and epoxy resin. Scanning electron microscopy was used to visualize the failure surface of the specimen after the microdroplet test. The scanning electron microscopic images indicated that the failure in the blend sized treated glass fiber–epoxy matrix specimen runs predominantly along the interphase and combines both cohesive failure in resin (the presence of some resin fragments) and adhesive failure (some bare fiber surfaces can be seen).


2014 ◽  
Vol 513-517 ◽  
pp. 161-164
Author(s):  
Xing Kai Chen

In the present investigation, carbon nanofibers (CNF) were dispersed in epoxy matrix to form CNF/glass fiber/epoxy composites. Before blending, CNF was oxidated to get more functional groups on CNF and improve the interface combination between resin and CNF, the infrared spectrum was used to test the efficiency. After that, tensile modulus tests were carried on for CNF/glass fiber/epoxy composites with different CNF fractions, the results indicated that there were slight improvements of tensile modulus when adding CNF. At 3.0 wt% of CNF, composites have the high improvement of tensile modulus, but the reinforcement of CNF decreased at 5.0 wt% of CNF. And the CNF reinforcement efficiency was analyzed using modified Coxs model and rule of mixture.


Polymers ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 1522
Author(s):  
Ming Zhang ◽  
Mingqing Chen ◽  
Zhongbin Ni

We synthesized PPG-terminated tetra-carbamates as a new toughening additive for epoxy thermosets through facile addition reaction of hexamethylene diisocyanate (HDI) with poly(tetra-methylene glycols) (PTMG) and poly(propylene glycols) (PPG). The effects of prepared tetra-carbamates on the rheological behavior of neat epoxy resin were studied along with the various cured properties of their modified epoxy systems. Four carbamate groups (–NHCOO–) endow the prepared additives not only with good intramolecular interactions, but also with optimal intermolecular interactions with epoxy polymers. This results in the suitable miscibility of the additives with the epoxy matrix for the formation of the typical biphasic structure of microparticles dispersed in the epoxy matrix via polymerization-induced microphase separation. The impact strength and critical stress concentration factor (KIC) of cured modified epoxy systems with the additives are significantly higher than those of unmodified epoxy systems, without sacrificing the processability (Tg) and flexural strength. The toughening mechanism is understood as a synergism combination among the phase separation mechanism, the in situ homogeneous toughening mechanism, and the particle cavitation mechanism.


Sign in / Sign up

Export Citation Format

Share Document