scholarly journals Influence of cutting speed on dry machinability of AISI 304 stainless steel

Author(s):  
Surjeet Singh Bedi ◽  
Sarthak Prasad Sahoo ◽  
Bikkina Vikas ◽  
Saurav Datta
2020 ◽  
Vol 62 (9) ◽  
pp. 957-961
Author(s):  
Nursel Altan Özbek ◽  
Metin İbrahim Karadag ◽  
Onur Özbek

Abstract This paper presents the effect of cutting tool, cutting speed and feed rate on the flank wear and surface roughness of austenitic stainless steel (AISI 304) during wet turning. Turning tests were designed based on the Taguchi method (L18). An orthogonal array, the signal-to-noise ratio (S/N) and the ANOVA were used to investigate the machinability of AISI 304 stainless steel with PVD and CVD coated tungsten carbide inserts. As a result of ANOVA, it was found that the feed rate was the most effective parameter on both flank wear and surface roughness.


2019 ◽  
Vol 15 (3) ◽  
pp. 538-558 ◽  
Author(s):  
Talwinder Singh ◽  
J.S. Dureja ◽  
Manu Dogra ◽  
Manpreet S. Bhatti

Purpose The purpose of this paper is to investigate the influence of turning parameters such as cutting speed, feed rate and depth of cut on tool flank wear and machined surface quality of AISI 304 stainless steel during environment friendly turning under nanofluid minimum quantity lubrication (NMQL) conditions using PVD-coated carbide cutting inserts. Design/methodology/approach Turning experiments are conducted as per the central composite rotatable design under the response surface methodology. ANOVA and regression analysis are employed to examine significant cutting parameters and develop mathematical models for VB (tool flank wear) and Ra (surface roughness). Multi-response desirability optimization approach is used to investigate optimum turning parameters for simultaneously minimizing VB and Ra. Findings Optimal input turning parameters are observed as follows: cutting speed: 168.06 m/min., feed rate: 0.06 mm/rev. and depth of cut: 0.25 mm with predicted optimal output response factors: VB: 106.864 µm and Ra: 0.571 µm at the 0.753 desirability level. ANOVA test reveals depth of cut and cutting speed-feed rate interaction as statistically significant factors influencing tool flank wear, whereas cutting speed is a dominating factor affecting surface roughness. Confirmation tests show 5.70 and 3.71 percent error between predicted and experimental examined values of VB and Ra, respectively. Research limitations/implications AISI 304 is a highly consumed grade of stainless steel in aerospace components, chemical equipment, nuclear industry, pressure vessels, food processing equipment, paper industry, etc. However, AISI 304 stainless steel is considered as a difficult-to-cut material because of its high strength, rapid work hardening and low heat conductivity. This leads to lesser tool life and poor surface finish. Consequently, the optimization of machining parameters is necessary to minimize tool wear and surface roughness. The results obtained in this research can be used as turning database for the above-mentioned industries for attaining a better machined surface quality and tool performance under environment friendly machining conditions. Practical implications Turning of AISI 304 stainless steel under NMQL conditions results in environment friendly machining process by maintaining a dry, healthy, clean and pollution free working area. Originality/value Machining of AISI 304 stainless steel under vegetable oil-based NMQL conditions has not been investigated previously.


2021 ◽  
Vol 8 ◽  
pp. 24
Author(s):  
A. Mathivanan ◽  
M.P. Sudeshkumar ◽  
R. Ramadoss ◽  
Chakaravarthy Ezilarasan ◽  
Ganesamoorthy Raju ◽  
...  

To-date, the usage of finite element analysis (FEA) in the area of machining operations has demonstrated to be efficient to investigate the machining processes. The simulated results have been used by tool makers and researchers to optimize the process parameters. As a 3D simulation normally would require more computational time, 2D simulations have been popular choices. In the present article, a Finite Element Model (FEM) using DEFORM 3D is presented, which was used to predict the cutting force, temperature at the insert edge, effective stress during turning of AISI 304 stainless steel. The simulated results were compared with the experimental results. The shear friction factor of 0.6 was found to be best, with strong agreement between the simulated and experimental values. As the cutting speed increased from 125 m/min to 200 m/min, a maximum value of 750 MPa stress as well as a temperature generation of 650 °C at the insert edge have been observed at rather higher feed rate and perhaps a mid level of depth of cut. Furthermore, the Response Surface Methodology (RSM) model is developed to predict the cutting force and temperature at the insert edge.


Author(s):  
J. A. Korbonski ◽  
L. E. Murr

Comparison of recovery rates in materials deformed by a unidimensional and two dimensional strains at strain rates in excess of 104 sec.−1 was performed on AISI 304 Stainless Steel. A number of unidirectionally strained foil samples were deformed by shock waves at graduated pressure levels as described by Murr and Grace. The two dimensionally strained foil samples were obtained from radially expanded cylinders by a constant shock pressure pulse and graduated strain as described by Foitz, et al.


Author(s):  
Rafael dos Santos Pereira ◽  
Roosevelt Droppa ◽  
Mara Cristina Lopes de Oliveira ◽  
Renato Altobelli Antunes

Sign in / Sign up

Export Citation Format

Share Document