Effect of elevated temperatures on the flexural strength of crushed rock dust concrete

Author(s):  
N. Venkata Sairam Kumar ◽  
S.V. Satyanarayana
2017 ◽  
Vol 8 (4) ◽  
pp. 392-401 ◽  
Author(s):  
Hassan A.M. Mhamoud ◽  
Jia Yanmin

Purpose This study aims to focus on the resistance to elevated temperatures of up to 700ºC of high-performance concrete (HPC) compared to ordinary Portland concrete (OPC) with regards to mass loss and residual compressive and flexural strength. Design/methodology/approach Two mixtures were developed to test. The first mixture, OPC, was used as the control, and the second mixture was HPC. After 28 days under water (per Chinese standard), the samples were tested for compressive strength and residual strength. Findings The test results showed that at elevated temperatures of up to 500ºC, each mixture experienced mass loss. Below this temperature, the strength and the mass loss did not differ greatly. Originality/value When adding a 10 per cent silica fume, 25 per cent fly, 25 per cent slag to HPC, the compressive strength increased by 17 per cent and enhanced the residual compressive strength. A sharp decrease was observed in the residual flexural strength of HPC when compared to OPC after exposure to temperatures of 700ºC.


Carbon ◽  
2020 ◽  
Vol 159 ◽  
pp. 324-332 ◽  
Author(s):  
H. Zielke ◽  
T. Wetzig ◽  
C. Himcinschi ◽  
M. Abendroth ◽  
M. Kuna ◽  
...  

1988 ◽  
Vol 15 (5) ◽  
pp. 776-783
Author(s):  
H. S. Wilson

Two similar mixes were made with cement contents of about 350 kg/m3 and a water–cement ratio of 0.50. The concrete specimens, moist cured for 7 days, were cured in air for 28 and 120 days, respectively, prior to heating. The exposure temperatures were 75, 150, 300, and 450 °C. The periods of exposure at each temperature were 2, 30, and 120 days.The compressive strengths, before heating, of the specimens cured for 35 and 120 days were 41.0 and 46.2 MPa, respectively, and the flexural strengths were 4.9 and 5.8 MPa. Compared with those strengths, the strengths of the specimens heated for 30 days or more increased at 75 °C but decreased at higher temperatures. The losses increased with increase in temperature, reaching about 30% at 450 °C.The flexural strength of the concrete cured in air for 28 days was more adversely affected than was the compressive strength. The flexural and compressive strengths of the concrete cured in air for 120 days were affected to about the same degree. The longer curing period had little effect on the relative losses in compressive strength, but the longer curing period reduced the loss in flexural strength. In most applications, the loss in strength could be compensated by proportioning the mix to overdesign for strength. Key words: high-density concrete, ilmenite, aggregates, high temperature, mechanical properties, nondestructive tests.


2013 ◽  
Vol 690-693 ◽  
pp. 323-328
Author(s):  
J. J. Sha ◽  
Y.X. Zhang ◽  
J. Li ◽  
J. X. Dai ◽  
Z. Q. Wei ◽  
...  

In order to investigate the influence of carbon fiber’s surface state on the mechanical properties and the fiber-matrix interaction of CFRP, the change of surface state was achieved by thermal treatment of carbon fibers at elevated temperatures, and the surface state was characterized by XPS. The mechanical properties were measured from the flexural test. The CFRP reinforced with 600 °C treated fabrics containing the highest reactive functional groups, showed the highest flexural strength and modulus. But in the case of CFRP reinforced with 1500 °C treated fabrics containing the lowest reactive functional groups, exhibited the lowest flexural strength and modulus. Combining the mechanical properties with the microstructure analysis, the results indicated that the fiber-matrix interaction (strong or weak) depends on the relative percentage of reactive functional groups present on the carbon fiber surface.


2022 ◽  
Vol 961 (1) ◽  
pp. 012085
Author(s):  
Aseel Mansi ◽  
Nadhim Hamah Sor ◽  
Nahla Hilal ◽  
Shaker M A Qaidi

Abstract The use of nano clay to improve the qualities of construction materials and engineering applications has attracted a lot of discussion in recent years. This review article summarizes the influence of nano clay as a cement substitute and supplement on the performance of conventional and high-performance concrete. The addition of nano clay to high performance concrete revealed an increase in compressive and flexural strength, as well as durability attributes such as resistance to elevated temperatures and sulfate attack, while simultaneously decreasing porosity, permeability, and water absorption. This enhancement is a result of nano clay’s roles as nano reinforcements, nanofillers, nucleation sites, and reactive pozzolans, which promote hydration and increase material characteristics.


Author(s):  
J.Y. Hsu ◽  
Y. Berta ◽  
R.F. Speyer

SiC fiber reinforced lithia-alumina-silica glass-ceramic composites have exhibited superior mechanical properties at room and elevated temperatures. The flexural strength of these composites is 3 to 4 times larger than that of monolithic glass-ceramics. The high flexural strength of these composites is due to the transfer of the applied load from the matrix to the stronger and stiffer SiC fiber reinforcement. These composites also have demonstrated very high fracture toughness, KIC (critical stress intersity factor) values of ∼ 17 MPa m1/2, which is attributed to an amorphous carbon-rich interfacial layer between the fiber and matrix. Nb2O2 has been added to the matrix composition in order to develop a NbC layer outside the amorphous C-rich layer after thermal processing, thereby buffering the fiber/matrix reactivity (avoid carbon forming CO gas which would deteriorate the matrix).


Sign in / Sign up

Export Citation Format

Share Document