The ability of high performance concrete to resist high temperature

2017 ◽  
Vol 8 (4) ◽  
pp. 392-401 ◽  
Author(s):  
Hassan A.M. Mhamoud ◽  
Jia Yanmin

Purpose This study aims to focus on the resistance to elevated temperatures of up to 700ºC of high-performance concrete (HPC) compared to ordinary Portland concrete (OPC) with regards to mass loss and residual compressive and flexural strength. Design/methodology/approach Two mixtures were developed to test. The first mixture, OPC, was used as the control, and the second mixture was HPC. After 28 days under water (per Chinese standard), the samples were tested for compressive strength and residual strength. Findings The test results showed that at elevated temperatures of up to 500ºC, each mixture experienced mass loss. Below this temperature, the strength and the mass loss did not differ greatly. Originality/value When adding a 10 per cent silica fume, 25 per cent fly, 25 per cent slag to HPC, the compressive strength increased by 17 per cent and enhanced the residual compressive strength. A sharp decrease was observed in the residual flexural strength of HPC when compared to OPC after exposure to temperatures of 700ºC.

2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Huai-Shuai Shang ◽  
Ting-Hua Yi

For use in fire resistance calculations, the relevant thermal properties of high-performance concrete (HPC) with fly ash were determined through an experimental study. These properties included compressive strength, cubic compressive strength, cleavage strength, flexural strength, and the ultrasonic velocity at various temperatures (20, 100, 200, 300, 400 and 500∘C) for high-performance concrete. The effect of temperature on compressive strength, cubic compressive strength, cleavage strength, flexural strength, and the ultrasonic velocity of the high-performance concrete with fly ash was discussed according to the experimental results. The change of surface characteristics with the temperature was observed. It can serve as a reference for the maintenance, design, and the life prediction of high-performance concrete engineering, such as high-rise building, subjected to elevated temperatures.


2013 ◽  
Vol 357-360 ◽  
pp. 825-828
Author(s):  
Su Li Feng ◽  
Peng Zhao

The test in order to obtain liquidity, higher intensity ultra-high performance concrete(UHPC), in the course of preparation, high intensity quartz sand to replace the ordinary sand,reasonable mixture ratio control low water-cement ratio,the incorporation of part of the test piece ofsteel fibers, produced eight specimens . In the ordinary molding and the standard conservation 28d thecase, the ultra-high-performance concrete compressive strength of more than 170MPa.Thepreparation of the test method and test results will provide the basis for further study of the law of themechanical properties of ultra high strength properties of concrete.


2016 ◽  
Vol 62 (4) ◽  
pp. 95-108 ◽  
Author(s):  
M. Kępniak ◽  
P. Woyciechowski

AbstractThis paper addresses the tensile and flexural strength of HPC (high performance concrete). The aim of the paper is to analyse the efficiency of models proposed in different codes. In particular, three design procedures from: the ACI 318 [1], Eurocode 2 [2] and the Model Code 2010 [3] are considered. The associations between design tensile strength of concrete obtained from these three codes and compressive strength are compared with experimental results of tensile strength and flexural strength by statistical tools. Experimental results of tensile strength were obtained in the splitting test. Based on this comparison, conclusions are drawn according to the fit between the design methods and the test data. The comparison shows that tensile strength and flexural strength of HPC depend on more influential factors and not only compressive strength.


2021 ◽  
pp. 224-231
Author(s):  
Huijie Shang, Qianqian Peng

In this paper, the effects of fiber on the residual strength and high temperature burst performance of ultra-high performance concrete are studied. This paper analyzes the performance change law of concrete after high temperature from three aspects: mass loss, ultrasonic wave velocity and compressive strength. The results show that with the increase of heating temperature, the mass loss increases and the ultrasonic wave velocity decreases. The compressive strength of concrete increases gradually before 300 ℃ and decreases gradually after 400 ℃. Mixing PVA fiber and steel fiber can not only improve the burst resistance of ultra-high performance concrete at high temperature, but also have high residual strength. This paper discusses the high temperature burst mechanism of ultra-high performance concrete, which is caused by the change of steam pressure and microstructure.


2022 ◽  
Vol 961 (1) ◽  
pp. 012085
Author(s):  
Aseel Mansi ◽  
Nadhim Hamah Sor ◽  
Nahla Hilal ◽  
Shaker M A Qaidi

Abstract The use of nano clay to improve the qualities of construction materials and engineering applications has attracted a lot of discussion in recent years. This review article summarizes the influence of nano clay as a cement substitute and supplement on the performance of conventional and high-performance concrete. The addition of nano clay to high performance concrete revealed an increase in compressive and flexural strength, as well as durability attributes such as resistance to elevated temperatures and sulfate attack, while simultaneously decreasing porosity, permeability, and water absorption. This enhancement is a result of nano clay’s roles as nano reinforcements, nanofillers, nucleation sites, and reactive pozzolans, which promote hydration and increase material characteristics.


1995 ◽  
Vol 22 (3) ◽  
pp. 617-620 ◽  
Author(s):  
Claude D. Johnson ◽  
S. Ali Mirza

This paper presents a simple, inexpensive confined cap testing method which can be employed in the compressive strength testing of high performance concrete cylinders. An inexpensive customized cylinder capping apparatus and standard concrete laboratory testing equipment are employed. The paper describes the capping apparatus, capping and testing procedures, as well as test results for concrete compressive strengths up to and exceeding 100 MPa. Key words: capping, capping confinement, compressive strength, cylinders, end condition, grinding, high-strength concrete, specimen size, testing.


2013 ◽  
Vol 353-356 ◽  
pp. 1577-1582
Author(s):  
Qian Wang ◽  
Tong Wei Lu ◽  
Lei Guo

A study on C80 high performance concrete used in deep freezing mine shaft liner is made. Test results are listed as follows: (1) Concretes compressive strength at 1 day is 53.0 MPa, while the compressive strength at 28 days is 93.5 MPa. (2) The diffusion coefficient of chloride ion at 28 days is 9.8×10-14m2/s, and freezing-thawing cycle is over 1000 times. The evidence above proves that this concrete can satisfy the requirements of C80 high performance concrete used in freezing shaft sinking techniques.


2010 ◽  
Vol 168-170 ◽  
pp. 1904-1909
Author(s):  
Bao Min Wang ◽  
Wei Liu

Kaolin is a material with broad sources and a low price. Metakaolin is made from kaolin which is calcined, finely ground at an optimum temperature of 750 being kept constant for 4 hours. High strength and performance concrete can be mixed from metakaolin as a substitute for equal mass cement. The influences of 5%, 10% and 15% metakaolin in substitution of equal cement masses were studied on the mechanical properties of high-performance concrete. The test results showed that the addition of metakaolin improved the cubic compressive strength, splitting tensile strength and flexural strength of HPC, among which the improvement in compressive strength was the most siginificant, and simultaneously, there was also an improvement in concrete toughness in a certain degree. The optimum content of metakaolin is 10% resulting in an increase of the cubic compressive strength of concrete by 8.3% correspondingly.


2008 ◽  
Vol 385-387 ◽  
pp. 701-704 ◽  
Author(s):  
Jung Jun Park ◽  
Gum Sung Ryu ◽  
Su Tae Kang ◽  
Sung Wook Kim

Silica fume constitutes an element of extreme importance in improving the strength and fluidity of UHPC. The adopted amount of silica fume generally is generally exceeding 25% of cement in weight but the influence of this amount on the properties of UHPC is still remaining as a domain to be investigated. Accordingly, this paper investigates the effects of the amount of silica fume on the mechanical characteristics of the fluidity, compressive strength, elastic modulus and flexural strength and on the micro structure of UHPC by means of SEM and MIP. Results revealed that adequate amount of silica fume is improving the fluidity and strength. MIP tests demonstrated that such improvement is brought by the increase of hydrates due to the pozzolan reaction and the effective densification inside concrete due to the filler. It seemed also that similar mechanical characteristics can be obtained for a volumetric ratio to cement ranging between 10 and 25%.


Materials ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5353
Author(s):  
Khaled A. Eltawil ◽  
Mohamed G. Mahdy ◽  
Osama Youssf ◽  
Ahmed M. Tahwia

Experimental work was carried out to study new fine aggregate shielding construction materials, namely black sand (BS). The BS effect on the mechanical, durability, and shielding characteristics of heavyweight high-performance concrete (HWHPC) was evaluated. This study aimed at improving various HWHPC properties, concertedly. Fifteen mixtures of HWHPC were made, with various variables, including replacing 10% and 15% of the cement with fly ash (FA) and replacing normal sand by BS at various contents (15%, 30%, 45%, 60%, 75%, and 100%). The test specimens were subjected to various exposure conditions, including elevated temperatures, which ranged from 250 °C to 750 °C, for a duration of 3 h; magnesium sulfate (MS) exposure; and gamma-ray exposure. The effects of elevated temperature and sulfate resistance on concrete mass loss were examined. The results revealed that BS is a promising shielding construction material. The BS content is the most important factor influencing concrete compressive strength. Mixes containing 15% BS demonstrated significantly better strength compared to the control mixes. Exposure to 250 °C led to a notable increase in compressive strength. BS showed a significant effect on HWHPC fire resistance properties, especially at 750 °C and a significant linear attenuation coefficient. Using 10% FA with 15% BS was the most effective mixing proportion for improving all HWHPC properties concertedly, especially at greater ages.


Sign in / Sign up

Export Citation Format

Share Document