Performance of ilmenite concrete at sustained elevated temperatures

1988 ◽  
Vol 15 (5) ◽  
pp. 776-783
Author(s):  
H. S. Wilson

Two similar mixes were made with cement contents of about 350 kg/m3 and a water–cement ratio of 0.50. The concrete specimens, moist cured for 7 days, were cured in air for 28 and 120 days, respectively, prior to heating. The exposure temperatures were 75, 150, 300, and 450 °C. The periods of exposure at each temperature were 2, 30, and 120 days.The compressive strengths, before heating, of the specimens cured for 35 and 120 days were 41.0 and 46.2 MPa, respectively, and the flexural strengths were 4.9 and 5.8 MPa. Compared with those strengths, the strengths of the specimens heated for 30 days or more increased at 75 °C but decreased at higher temperatures. The losses increased with increase in temperature, reaching about 30% at 450 °C.The flexural strength of the concrete cured in air for 28 days was more adversely affected than was the compressive strength. The flexural and compressive strengths of the concrete cured in air for 120 days were affected to about the same degree. The longer curing period had little effect on the relative losses in compressive strength, but the longer curing period reduced the loss in flexural strength. In most applications, the loss in strength could be compensated by proportioning the mix to overdesign for strength. Key words: high-density concrete, ilmenite, aggregates, high temperature, mechanical properties, nondestructive tests.

2020 ◽  
Vol 10 (10) ◽  
pp. 3519 ◽  
Author(s):  
Chao-Wei Tang

In this study, the effects of individual and mixed fiber on the mechanical properties of lightweight aggregate concrete (LWC) after exposure to elevated temperatures were examined. Concrete specimens were divided into a control group (ordinary LWC) and an experimental group (fiber-reinforced LWC), and their compressive strength, elastic modulus, and flexural strength after heating to high temperatures of 400–800 °C were investigated. The four test parameters included concrete type, concrete strength, fiber type, and targeted temperature. The test results show that after exposure to 400–800 °C, the variation in mechanical properties of each group of LWC showed a trend of increasing first and then decreasing. After exposure to 400 °C, the residual mechanical properties of all specimens did not attenuate due to the drying effect of the high temperature and the more sufficient cement hydration reaction. However, after exposure to 800 °C, the residual mechanical properties significantly reduced. Overall, the mixed fiber-reinforced LWC showed a better ability to resist the loss of mechanical properties caused by high temperature. Compared with the loss of compressive strength, the flexural strength was relatively lost.


2019 ◽  
Vol 2 (2) ◽  
pp. 126-136
Author(s):  
M.I Retno Susilorini ◽  
Budi Eko Afrianto ◽  
Ary Suryo Wibowo

Concrete building safety of fire is better than other building materials such as wood, plastic, and steel,because it is incombustible and emitting no toxic fumes during high temperature exposure. However,the deterioration of concrete because of high temperature exposure will reduce the concrete strength.Mechanical properties such as compressive strength and modulus of elasticity are absolutely corruptedduring and after the heating process. This paper aims to investigate mechanical properties of concrete(especially compressive strength and modulus of elasticity) with various water-cement ratio afterconcrete suffered by high temperature exposure of 500oC.This research conducted experimental method and analytical method. The experimental methodproduced concrete specimens with specifications: (1) specimen’s dimension is 150 mm x 300 mmconcrete cylinder; (2) compressive strength design, f’c = 22.5 MPa; (3) water-cement ratio variation =0.4, 0.5, and 0.6. All specimens are cured in water for 28 days. Some specimens were heated for 1hour with high temperature of 500oC in huge furnace, and the others that become specimen-controlwere unheated. All specimens, heated and unheated, were evaluated by compressive test.Experimental data was analyzed to get compressive strength and modulus of elasticity values. Theanalytical method aims to calculate modulus of elasticity of concrete from some codes and to verifythe experimental results. The modulus elasticity of concrete is calculated by 3 expressions: (1) SNI03-2847-1992 (which is the same as ACI 318-99 section 8.5.1), (2) ACI 318-95 section 8.5.1, and (3)CEB-FIP Model Code 1990 Section 2.1.4.2.The experimental and analytical results found that: (1) The unheated specimens with water-cementratio of 0.4 have the greatest value of compressive strength, while the unheated specimens with watercementratio of 0.5 gets the greatest value of modulus of elasticity. The greatest value of compressivestrength of heated specimens provided by specimens with water-cement ratio of 0.5, while the heatedspecimens with water-cement ratio of 0.4 gets the greatest value of modulus of elasticity, (2) Allheated specimens lose their strength at high temperature of 500oC, (3) The analytical result shows thatmodulus of elasticity calculated by expression III has greater values compares to expression I and II,but there is only little difference value among those expressions, and (4)The variation of water-cementratio of 0.5 becomes the optimum value.


2021 ◽  
Vol 25 (6 Part B) ◽  
pp. 4441-4448
Author(s):  
Ping Xu ◽  
Dong Han ◽  
Jian-Xin Yu ◽  
Yu-Hao Cui ◽  
Min-Xia Zhang

The aim of the present paper is to study the mechanical properties of aluminate cement mortar mixed with different chopped fibers under high temperature. The specimens with a size of 40 mm ? 40 mm ? 160 mm is treated at various tempera?tures of 25?C, 200?C, 400?C, 600?C, and 800?C. The compressive and flexural strength of the aluminate cement mortar and its micro-structures are tested. The results show that the chopped steel fibers and basalt fibers are effective in improv?ing the high temperature mechanical properties of aluminate cement mortar. When the volume fraction of chopped steel fibers is 2%, the compressive strength and flexural strength of the test block treated at the temperature of 800?C increase by 18.3% and 128.6%, respectively.


2013 ◽  
Vol 795 ◽  
pp. 664-668 ◽  
Author(s):  
Roshasmawi Abdul Wahab ◽  
Mohd Noor Mazlee ◽  
Shamsul Baharin Jamaludin ◽  
Khairul Nizar Ismail

In this study, the mixing of polystyrene (PS) beads and fly ash as a sand replacement material in foamed cement composites (FCC) has been investigated. Specifically, the mechanical properties such as compressive strength and flexural strength were measured. Different proportions of fly ash were added in cement composites to replace the sand proportion at 3 wt. %, 6 wt. %, 9 wt. % and 12 wt. % respectively. The water to cement ratio was fixed at 0.65 meanwhile ratios of PS beads used was 0.25 volume percent of samples as a foaming agent. All samples at different mixed were cured at 7 and 28 days respectively. Based on the results of compressive strength, it was found that the compressive strength was increased with the increasing addition of fly ash. Meanwhile, flexural strength was decreased with the increasing addition of fly ash up to 9 wt. %. The foamed cement composites with 12 wt. % of fly ash produced the highest strength of compressive strength meanwhile 3 wt. % of fly ash produced the highest strength of flexural strength.


Author(s):  
Fumitada Iguchi ◽  
Hiromichi Kitahara ◽  
Hiroo Yugami

The mechanical properties of Ni-YSZ cermets at high temperature in reduction atmosphere were evaluated by the four points bending method. We studied the influences of reduction and thermal cycles, i.e. a cycle from R.T. to 800°C, to flexural strength and Young’s modulus. The flexural strength of Ni-YSZ at room temperature was lower than that of NiO-YSZ by about 10 to 20% mainly caused by the increment of porosity. But, the flexural strength of Ni-YSZ at 800°C was drastically decreased by an half of that at R.T. In addition, the stress–strain diagram of Ni-YSZ at 800°C indicated that it showed weak ductility. The maximum observed strain was over 0.5% at 30MPa. On the contrary, NiO-YSZ showed only brittlely at 800°C. The difference was caused by Ni metal in the Ni-YSZ cermets. Therefore, it was expected that Ni-YSZ is easily deformed in operation, though residual stress between an anode and an electrolyte was low. The influence of thermal cycles to flexural strength and Young’s modulus was not observed clearly. At the same time, the differences of microstructure were not observed. Therefore, it was concluded that the cycle does not change mechanical properties significantly.


Materials ◽  
2020 ◽  
Vol 13 (7) ◽  
pp. 1581 ◽  
Author(s):  
Jianjun Sha ◽  
Shouhao Wang ◽  
Jixiang Dai ◽  
Yufei Zu ◽  
Wenqiang Li ◽  
...  

In order to understand the influence of the mechanisms of ZrC nanoparticles on the high-temperature mechanical properties of C-SiC ceramic matrix composites, the mechanical properties were measured from room temperature (RT) to 1600 °C under vacuum. The microstructures features were characterized by scanning electron microscopy. In comparison with the composites without ZrC nanoparticles, the ZrC-modified composite presented better mechanical properties at all temperatures, indicating that the mechanical properties could be improved by the ZrC nanoparticles. The ZrC nanoparticles could reduce the residual silicon and improve the microstructure integrity of composite. Furthermore, the variation of flexural strength and the flexural modulus showed an asynchronous trend with the increase of temperature. The flexural strength reached the maximum value at 1200 °C, but the highest elastic modulus was obtained at 800 °C. The strength increase was ascribed to the decrease of the thermally-induced residual stresses. The degradation of mechanical properties was observed at 1600 °C because of the microstructure deterioration and the formation of strongly bonded fiber–matrix interface. Therefore, it is concluded that the high temperature mechanical properties under vacuum were related to the consisting phase, the matrix microstructure, and the thermally-induced residual stresses.


2014 ◽  
Vol 597 ◽  
pp. 320-323 ◽  
Author(s):  
De Hong Wang ◽  
Yan Zhong Ju ◽  
Wen Zhong Zheng

Mechanical properties of reactive powder concrete (RPC) containing fly ash were investigated under different curing regimes (standard and steam curing) in this study. The experimental results indicate that, flexural strength of RPC increased considerably after steam curing, compared to the standard curing. Steam curing had no significant effect on compressive strength of RPC. Increasing the fly ash content improved the flexural strength of RPC under all curing regimes considerably. The compressive strength reached a maximum (103.8MPa) when the fly to ash and cement ratio is 0.3.


Author(s):  
Hsiu-Tao Chang ◽  
Chih-Kuang Lin ◽  
Chien-Kuo Liu

The high temperature mechanical properties in a glass-ceramic sealant of BaO-B2O3-Al2O3-SiO2 system was studied by four-point bending test at room temperature, 550°C, 600°C, 650°C, and 700°C, to investigate the variation of Young’s modulus, flexural strength, and stress relaxation. Weibull statistic analysis was applied to describe the fracture strength of the given glass ceramic. The crystalline phase was produced by controlled heat treatment and analyzed by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The results indicated that the flexural strength was enhanced at high temperatures when the testing temperature was below the glass transition temperature (Tg). This was presumably due to a crack healing effect taking place at high temperature. Significant stress relaxation for the given glass ceramic was observed to generate extremely large deformation without breaking the specimens when the testing temperature was set at 700°C.


2019 ◽  
Vol 11 (2) ◽  
pp. 500 ◽  
Author(s):  
Hyung-Jun Kim ◽  
Jae-Yeon Park ◽  
Heong-Won Suh ◽  
Beom-Yeon Cho ◽  
Won-Jun Park ◽  
...  

A polymer-modified cement mortar (PCM) is widely used as a repair material for reinforced concrete (RC) structures owing to its excellent strength and durability. However, considering the maintenance of the RC structures and the use period of the structures, the change in the physical properties of the PCM should be evaluated when exposed to various high-temperature environments, such as fires. In this study, the degradation of the mechanical properties (compressive strength and modulus of elasticity), thermal decomposition of the PCM in various high-temperature environments, and the change in the pore structure of the PCM after exposure to high temperatures were quantitatively investigated. A mechanical property evaluation of PCM was performed under three heating conditions: (i) heating in a compression tester, (ii) heating the specimen in an oven to a predetermined temperature and then moving it to a compression tester preheated to the same temperature, and (iii) cooling to room temperature after heating. In the experiment, a PCM specimen was prepared by changing the polymer–cement ratio (polymer content) of ethylene-vinyl acetate (EVA), the most commonly used polymer, to perform a high-temperature sectional test from 200 to 800 °C. In addition, to investigate the change in the PCM mechanical properties in the high-temperature region, in terms of the pyrolysis of EVA, the porosity change and mass change were examined using thermal analysis and mercury intrusion porosimetry. Before heating, the compressive strength of the PCM increased with the EVA content up to 10 % of the polymer–cement ratio. Under the cooling conditions after heating up to 200 °C, the mechanical performance of the PCM was restored, whereas the degradation of the mechanical properties of the PCM without cooling was more pronounced. Furthermore, the mass loss, heat flow, and the total porosity of the PCM increased as the EVA content increased, which is correlated with the degradation of the mechanical properties of the PCM.


2005 ◽  
Vol 488-489 ◽  
pp. 845-848 ◽  
Author(s):  
Yeon Jun Chung ◽  
Jung Lae Park ◽  
Nack J. Kim ◽  
Kwang Seon Shin

The effects of alloying elements on the microstructure and high temperature mechanical properties of Mg-Al alloys were investigated in this study. In order to improve the high temperature mechanical properties, Sr or Mm was added to the Mg-9Al alloy. The effect of Sn on the Mg-9Al alloy was also examined since Sn was expected to improve the high temperature mechanical properties by forming the thermally stable Mg2Sn phase. The specimens used in this study were produced on a 320 ton cold chamber high-pressure die casting machine. The microstructures of the specimens were examined by optical and scanning electron microscopy and tensile and creep tests were performed at elevated temperatures. Tensile tests were carried out at room temperature, 150oC and 200oC using an initial strain rate of 2×10-4/sec. In addition, tensile creep tests were conducted at the stress levels of 50 MPa and 70 MPa. From the microstructure analyses of the specimens after heat treatment at 400oC for 12 hours, it was found that most of the Mg17Al12 precipitate dissolved into the matrix, while the thermally stable phases continued to exist. The high temperature mechanical properties of the Mg-9Al alloys were found to improve significantly with the additions of Sr, Mm and Sn, due to the formation of the thermally stable precipitates.


Sign in / Sign up

Export Citation Format

Share Document