Enhancement approach for the sugarcane bark peeling system

Author(s):  
B. Prabu ◽  
K. Boopathy ◽  
V. Ramasamy ◽  
A. Muthu Kumaran ◽  
V. Yamunadevi
Keyword(s):  
2016 ◽  
Vol 167 (2) ◽  
pp. 98-104
Author(s):  
Bastien Cochard ◽  
François Lefort

A case of sooty bark disease and Cytospora poplar canker in the Canton of Geneva In summer 2014, a case of sooty bark disease caused by Cryptostroma corticale on an individual field maple (Acer campestre) and two cases of poplar canker due to Cytospora chrysosperma on Populus x euramericana were identified genetically for the first time on the territory of the Canton of Geneva. In both cases, the trees presented signs of very advanced dieback, accompanied by specific symptoms such as bark peeling and sooty plaques for the maple, and loose twisted bark layers and black colouring of the wood in structural branches of the poplars. Sampling was carried out in the symptomatic areas and components of the fungal flora were isolated in pure cultures in order to identify any pathogenic fungi. The molecular analysis of the rDNA internal transcribed spacer (ITS) sequences made it possible to identify precisely all pure isolates obtained. The results showed a majority presence of C. corticale in the maple tree, and of C. chrysosperma in the two poplars. Both these fungi are little known in Switzerland and Europe, and their presence is maybe associated with changes in the climate.


2019 ◽  
Vol 84 (3) ◽  
pp. 516-530 ◽  
Author(s):  
Jacob K. Earnshaw

Culturally modified trees (CMTs) provide tangible evidence of long-term forest use by Indigenous peoples. In Northwest Coast cedar forests, this record rarely spans beyond the last three centuries because older bark-harvest scars have been obscured through taphonomic processes such as natural healing and decay. Thus, archaeological visibility and identification are hindered. Here, I recover chronologies of ancient forest harvesting using a post-impact assessment methodology of targeting old-growth clear-cuts in southern Nuu-chah-nulth territories on the west coast of Vancouver Island, British Columbia, Canada. Bark-peeling scars are identified and dated in cross section by growth-ring patterns of recently logged trees. Approximately half of all bark-peeling scars are “embedded” inside healing lobes, suggesting at least half of all such CMTs are effectively invisible in standing forests. Features in these post-impact surveys predated those discovered in conventional archaeological impact assessments by a mean of almost a century. Additionally, one of the oldest continually used cultural forests ever recorded, dating to AD 908, is found in the Toquaht Nation traditional territory. These findings uncover measurable frequencies of cedar-bark harvesting generations prior to the contact period and reveal the inadequacy of heritage protections for old-growth cedar stands.


1969 ◽  
Vol 47 (12) ◽  
pp. 1965-1971 ◽  
Author(s):  
John C. Zasada ◽  
Robert Zahner

Earlywood formation was observed in 60-year-old forest-grown red oak trees in southern Michigan. Extreme care in removing samples from the cambial region of the main stem at 1.4 m and 18 m, and from small branches at about 24 m, permitted the following conclusions. First vessel elements were initiated in the second or third xylem derivative radially removed from the previous year's latewood, possibly in overwintering derivatives, simultaneously throughout the bole and branches of the tree, some 2 weeks before bud enlargement. Vessel elements enlarged first in the tangential dimension (to about 200 μ.) within a few days after initiation of differentiation. Enlargement in the radial direction required up to 2 weeks to grow 300 μ, occurring as the entire xylem mother cell zone was displaced outward by cambial growth to either side—tangentially—of the vessel element. The duration of earlywood formation was about 10 weeks, while the duration of shoot elongation was less than 2 weeks. First earlywood vessels were fully mature about 5 weeks after initiation, coinciding with the unfolding of first leaves. All foliage was mature several weeks before complete maturation of later formed earlywood vessels. Detailed stem analysis and bark peeling studies revealed that stem sections clear of branching contained few lateral junctions between axial vessels. There were many such junctions where twigs joined larger limbs and where limbs joined the main stem; all such junctions were between adjacent vessels from the same limb.


Plant Ecology ◽  
2008 ◽  
Vol 198 (2) ◽  
pp. 265-274 ◽  
Author(s):  
Adriana López-Villalobos ◽  
Alejandro Flores-Palacios ◽  
Raúl Ortiz-Pulido

2018 ◽  
Vol 45 (1) ◽  
pp. 1-7 ◽  
Author(s):  
Denisa Sedmáková ◽  
Mariana Kýpeťová ◽  
Milan Saniga ◽  
Ján Pittner ◽  
Jaroslav Vencurik ◽  
...  

Abstract Browsing and bark peeling by ungulates is known to affect biodiversity and may constitute the main driving factor of single tree population dynamics. In Slovakia, European yew (Taxus baccata L.) is a threatened species protected by law and present in many protected areas. In the study, we emphasize that protecting land and individual plants may not be sufficient for maintaining of yew populations, unless controlling over damage by deer game is also undertaken. Our results show that in beech forests of the Veľká Fatra Mts, browsing and bark peeling constitute the main negative factor affecting yew seedling-sapling ingrowth transition, and the mortality and vitality loss of adult yew trees. We argue that ungulates may have a larger effect on biodiversity conservation than currently realized.


Forests ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1782
Author(s):  
Samsuddin Ahmad Syazwan ◽  
Ahmad Mohd-Farid ◽  
Wan-Azhar Wan-Muhd-Azrul ◽  
Hishamuddin Muhammad Syahmi ◽  
Abdullah Mohd Zaki ◽  
...  

Ceratocystis wilt disease surveys were conducted in three selected Malaysian Acacia mangium plantations. These completed surveys revealed the occurrence of the wilt disease, with the incidence of infection ranging from 7.5% to 13.6%. Signs of wood-boring insects, bark peeling due to squirrel activity, and pruning wounds were often associated with this disease. The fungus most frequently isolated from the diseased trees was the Ceratocystis fungus. The analysis on the morphological characteristics has identified the fungus as Ceratocystis fimbriata complex. Phylogenetic analysis based on the sequences of the ITS, and concatenated sequences of EF1α-βT regions grouped the isolates within the C. fimbriata sensu stricto, in comparison to other C. fimbriata isolates. Pathogenicity tests were conducted on six to nine-month-old healthy A. mangium seedlings by inoculating these seedlings with eight out of the 16 isolates. The results demonstrated that all the isolates were pathogenic, with mortality beginning as early as two weeks after inoculation. However, an ANOVA test indicated a significant difference between the pathogenicity levels among the fungal isolates. The results also showed that pathogen aggressiveness was not correlated with geographical origin. A host range test was also conducted by using C. fimbriata SSB3 and FRIM1162 isolates against several forest plantation species. The findings suggested that only A. mangium was susceptible to C. fimbriata. The other species remained healthy with no symptoms of infection even after seven weeks of treatment, as compared to the A. mangium species, where between 38 to 60% of the inoculated plants had died. This study provides new information on the status of Ceratocystis wilt disease, especially on the occurrence and effects on A. mangium plantation, by giving insights on how to control and manage this ferocious plant pathogen in the future.


Biologia ◽  
2010 ◽  
Vol 65 (4) ◽  
Author(s):  
Beata Zimowska

AbstractIn the years 2004–2006 the species P. sclareae was isolated from sage stems showing the symptoms in the form of bark peeling off and breaking. On the basis of 5 isolates randomly chosen from the fungus population, morphology and the conditions of temperatures favourable for the most intensive growth and creation of the fungus infectious material were studied. The temperature of −6°C was viewed as unfavourable for the fungus growth, and that of 32°C was considered to prevent the formation of picnidia and conidia. The dynamic growth of the colonies and the formation of numerous picnidia and conidia were observed at the temperatures ranging from 20°C to 28°C.


Phytotaxa ◽  
2020 ◽  
Vol 468 (3) ◽  
pp. 236-242
Author(s):  
WESSEL SWANEPOEL

Petalidium kaokoense, here described as a new species, is only known from the Hartmann Mountains and one other location on the inland plateau in the Kaokoveld Centre of Endemism, northwestern Namibia, where it grows on hillsides and mountain slopes. Diagnostic characters for P. kaokoense include the stout trunk on older plants, white bark, peeling on the younger branches in long, narrow strips, stellate trichomes, short inflorescences of racemoid dichasia with acute linear-oblanceolate or linear-lanceolate bracts, flowers with maroon corollas with the two upper lobes connate towards the base and the lower lobe with two yellow spots near the base. A comparison of some of the more prominent morphological features to differentiate between Petalidium kaokoense and its presumed close relative, the morphologically similar P. physaloides, is provided. Based on IUCN Red List categories and criteria, a conservation assessment of Vulnerable (VU D1) is recommended for the new species.


2020 ◽  
Vol 41 (6) ◽  
pp. 962-988 ◽  
Author(s):  
Juan Lapuente ◽  
Mimi Arandjelovic ◽  
Hjalmar Kühl ◽  
Paula Dieguez ◽  
Christophe Boesch ◽  
...  

AbstractPrimates often consume either bark or cambium (inner bark) as a fallback food to complete their diet during periods of food scarcity. Wild chimpanzees exhibit great behavioral diversity across Africa, as studies of new populations frequently reveal. Since 2014, we have been using a combination of camera traps and indirect signs to study the ecology and behavior of wild chimpanzees (Pan troglodytes verus) in Comoé National Park, Ivory Coast, to document and understand the behavioral adaptations that help them to survive in a savanna–forest mosaic landscape. We found that Comoé chimpanzees peel the bark of the buttresses of kapok tree (Ceiba pentandra) trees to eat the cambium underneath. Individuals of all sex/age classes across at least six neighboring communities peeled the bark, but only during the late rainy season and beginning of the dry season, when cambium may represent an important fallback food. Baboons (Papio anubis) also target the same trees but mainly eat the bark itself. Most of the bark-peeling wounds on Ceiba trees healed completely within 2 years, seemingly without any permanent damage. We recorded chimpanzees visiting trees in early stages of wound recovery but leaving them unpeeled. Only 6% of peeled trees (N = 53) were reexploited after a year, suggesting that chimpanzees waited for the rest of the trees to regrow the bark fully before peeling them again, thus using them sustainably. Many human groups of hunter-gatherers and herders exploited cambium sustainably in the past. The observation that similar sustainable bark-peeling behavior evolved in both chimpanzees and humans suggests that it has an important adaptive value in harsh environments when other food sources become seasonally scarce, by avoiding the depletion of the resource and keeping it available for periods of scarcity.


Sign in / Sign up

Export Citation Format

Share Document