Comparative thermal performance evaluation of a heat sink based on geometrical and material amendments: A numerical study

Author(s):  
Raj Aryan Saini ◽  
Minesh Vohra ◽  
Arpit Singh ◽  
Tarique Rabbani ◽  
Mohit Choudhary
2016 ◽  
Vol 25 ◽  
pp. 1182-1190 ◽  
Author(s):  
Jesto Thomas ◽  
P.V.S.S. Srivatsa ◽  
S. Ramesh Krishnan ◽  
Rajesh Baby

2019 ◽  
Vol 7 (1) ◽  
pp. 43-53
Author(s):  
Abbas Jassem Jubear ◽  
Ali Hameed Abd

The heat sink with vertically rectangular interrupted fins was investigated numerically in a natural convection field, with steady-state heat transfer. A numerical study has been conducted using ANSYS Fluent software (R16.1) in order to develop a 3-D numerical model.  The dimensions of the fins are (305 mm length, 100 mm width, 17 mm height, and 9.5 mm space between fins. The number of fins used on the surface is eight. In this study, the heat input was used as follows: 20, 40, 60, 80, 100, and 120 watts. This study focused on interrupted rectangular fins with a different arrangement and angle of the fins. Results show that the addition of interruption in fins in various arrangements will improve the thermal performance of the heat sink, and through the results, a better interruption rate as an equation can be obtained.


2021 ◽  
Author(s):  
Rohith Joison ◽  
Vivek Babu ◽  
A. Kannan ◽  
Azher Muhammed ◽  
G. Harikrishnan

Author(s):  
S. S. Bahga ◽  
A. Bhattacharya ◽  
Roop L. Mahajan

This paper investigates the effects of the presence of unheated and heated shrouds on the thermal performance of longitudinal finned heat sinks. A comprehensive numerical study was conducted to determine the impact of the shroud clearance from the tip of the fins and shroud heating. The first part of the study deals with the effects of an unheated shroud on finned heat sinks of different fin height, fin pitch and length in an attempt to cover a wide range of geometry. The numerical results reveal an optimum clearance for maximum heat transfer. For all heat sinks studied the unheated shroud improved the performance by as much as 15% until the shroud was very close when the performance decreased by as much as 10%. In the second part of the paper, the effects of heating of the shroud were considered. In these numerical runs, an isothermal boundary condition was imposed on the shroud. For the heating levels considered, it was found that heating of the shrouds can increase or lower the thermal performance of the heat sink depending on the heat sink geometry and shroud clearance. Finally, the numerical results also revealed a systematic dependence of the normalized Nusselt number on the Rayleigh number for a given heat sink geometry.


Sign in / Sign up

Export Citation Format

Share Document