Welding simulation of circumferential weld joint using TIG welding process

Author(s):  
Hitesh Arora ◽  
K. Mahaboob Basha ◽  
D. Naga Abhishek ◽  
B. Devesh
2016 ◽  
Vol 880 ◽  
pp. 21-24
Author(s):  
Kamlesh Kumar ◽  
Pankaj Ahirwar ◽  
Manoj Masanta

In this study, AISI 1020 plate of 6 mm thickness has been welded by autogenous TIG welding process maintaining different root gap (0, 0.5, 0.75 and 1 mm). The weld bead profile and the tensile strength of the welded joint has been analysed. From the experimental results it is revealed that, for increasing the root gap, weld depth penetration increases; whereas weld bead width and heat affected zone (HAZ) is almost uniform. However, at the similar condition, under-filling of the weld joint increases with the increase in root gap. For using 1 mm root gap, weld joint exhibit full depth of penetration and maximum tensile strength, along with higher under-filling.


Author(s):  
Samuel Lorin ◽  
Christoffer Cromvik ◽  
Fredrik Edelvik ◽  
Rikard Söderberg

In any industrial assembly process, there are a number of sources of variation. Variation in the manufacturing process leads to component variation, which, together with fixture variation and variation stemming from the joining process, propagates to the final product. In order to analyze and diminish the effect of variation, it is important to identify and be able to simulate the phenomena contributing to final variation. In this paper, the focus is variation in welding distortion arising from non-nominal components that are joined. In the welding process, it has been shown that variation in components and in fixtures influences the size and distribution of weld-induced distortion. Hence, in order to accurately simulate geometric variation of an assembly joined by weld joints, variation simulation and welding simulation need to be performed in combination. Previous research that focused on the combination of variation simulation and welding simulation has not considered components that are clamped. Instead the components were treated as rigid bodies at non-nominal positions prior to welding. In many industrial applications, clamps are used when assemblies are welded, and it is therefore important to quantify the influence that clamping has on welding of non-nominal components. In this paper, we simulate the combination of variation in components and fixtures with welding, considering that the components are clamped prior to welding. Although clamps will force the components closer to their nominal positions along the weld joint, they also introduce a stress field in the structure, which together with the welding process may cause additional distortion. Two case studies are performed and analyzed: a T-weld joint and a butt-weld joint. The results show that welding distortion depends on fixture error even in the presence of clamps.


Author(s):  
A. Blouin ◽  
S. Chapuliot ◽  
S. Marie ◽  
J. M. Bergheau ◽  
C. Niclaeys

One important part of the integrity demonstration of large ferritic components is based on the demonstration that they could never undergo brittle fracture. Connections between a ferritic component and an austenitic piping (Dissimilar Metal Weld — DMW) have to respect these rules, in particular the Heat Affected Zone (HAZ) created by the welding process and which encounters a brittle-to-ductile transition. Within that frame, the case considered in this article is a Ni base alloy narrow gap weld joint between a ferritic pipe (A533 steel) and an austenitic pipe (316L stainless steel). The aim of the present study is to show that in the same loading conditions, the weld joint is less sensitive to the brittle fracture than the surrounding ferritic part of the component. That is to say that the demonstration should be focused on the ferritic base metal which is the weakest material. The bases of this study rely on a stress-based criterion developed by Chapuliot et al., using a threshold stress (σth) below which the cleavage cannot occur. This threshold stress can be used to define the brittle crack occurrence probability, which means it is possible to determine the highest loading conditions without any brittle fracture risk.


2017 ◽  
Vol 904 ◽  
pp. 19-23
Author(s):  
Van Nhat Nguyen ◽  
Quoc Manh Nguyen ◽  
Dang Thi Huong Thao ◽  
Shyh Chour Huang

Welding dissimilar materials has been widely applied in industries. Some of them are considered this as a strategy to develop their future technology products. Aluminum alloy and stainless steel have differences in physical, thermal, mechanical and metallurgic properties. However, selecting a suitable welding process and welding rods can solve this problem. This research aimed to investigate the T-joint welding between A6061 aluminum alloy and SUS304 stainless steel using new welding rods, Aluma-Steel by the Tungsten Inert Gas (TIG) welding process. The mechanical properties, the characteristics of microstructure, and component analysis of the welds have been investigated by the mechanical testing, scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). As a result, the fracture occurred at the adjacent area between welding seam and A6061 alloys plate. The thermal cracking appeared at central welding-seam along the base metals if high welding current. A large amount of copper elements found in the welds due to using the new welding rod, Aluma-Steel rod.


2004 ◽  
Vol 120 ◽  
pp. 697-704
Author(s):  
L. Depradeux ◽  
J.-F. Jullien

In this study, a parallel experimental and numerical simulation of phenomena that take place in the Heat Affected Zone during TIG welding on 316L stainless steel is presented. The aim of this study is to predict by numerical simulation residual stresses and distortions generated by the welding process. For the experiment, a very simple geometry with reduced dimensions is considered: the specimens are disks, made of 316L. The discs are heated in the central zone in order to reproduce thermo-mechanical cycles that take place in the HAZ during a TIG welding process. During and after thermal cycle, a large quantity of measurement is provided, and allows to compare the results of different numerical models used in the simulations. The comparative thermal and mechanical analysis allows to assess the general ability of the numerical models to describe the structural behavior. The importance of the heat input rate and material characteristics is also investigated.


Metals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1308
Author(s):  
Minho Park ◽  
Jisun Kim ◽  
Changmin Pyo ◽  
Jaewoong Kim ◽  
Kwangsan Chun

The demand for LNG-powered ships and related equipment is rapidly increasing among major domestic and foreign carriers due to the strengthened IMO regulations on the sulfur content of ship fuel oil. LNG operation in a cryogenic environment requires a storage tank and fuel supply system that uses steel with excellent brittleness and fatigue strength. A ship using LNG is very sensitive to explosion and fire. For this reason, 9% Ni is often used, because ships require high quality products with special materials and structural technologies that ensure operability at cryogenic temperatures. However, research to derive uniform welding quality is urgent because the deterioration of weld quality in the 9% Ni steel welding process is caused by high process difficulty and differences in welding quality depending on a welder’s skill set. This study proposes a method to guarantee a uniform quality of 9% Ni steel in a fiber laser welding process by categorizing weld joint hardness according to the dilution ratio of a base material and establishing a standard for quantitative evaluation.


2019 ◽  
Vol 13 (1) ◽  
pp. 4415-4433
Author(s):  
I. B. Owunna ◽  
A. E. Ikpe

Induced residual stresses on AISI 1020 low carbon steel plate during Tungsten Inert Gas (TIG) welding process was evaluated in this study using experimental and Finite Element Method (FEM). The temperature range measured from the welding experimentation was 251°C-423°C, while the temperature range measured from the FEM was 230°C-563°C; whereas, the residual stress range measured from the welding experimentation was 144MPa-402Mpa, while the residual range measured from the FEM was 233-477MPa respectively. Comparing the temperature and stress results obtained from both methods, it was observed that the range of temperature and residual stresses measured were not exactly the same due to the principles at which both methods operate but disparities between the methods were not outrageous. However, these values can be fed back to optimization tools to obtain optimal parameters for best practices.  Results of the induced stress distribution was created from a static study where the thermal results were used as loading conditions and it was observed that the temperature increased as the von-Mises stress increased, indicating that induced stresses in welded component may hamper the longevity of such component in service condition. Hence, post-weld heat treatment is imperative in order to stress relieve metals after welding operation and improve their service life.


Sign in / Sign up

Export Citation Format

Share Document