scholarly journals State of art overview of Non-Intrusive Load Monitoring applications in smart grids

2021 ◽  
Vol 18 ◽  
pp. 100145
Author(s):  
Giovanni Bucci ◽  
Fabrizio Ciancetta ◽  
Edoardo Fiorucci ◽  
Simone Mari ◽  
Andrea Fioravanti
Energies ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4649
Author(s):  
İsmail Hakkı ÇAVDAR ◽  
Vahit FERYAD

One of the basic conditions for the successful implementation of energy demand-side management (EDM) in smart grids is the monitoring of different loads with an electrical load monitoring system. Energy and sustainability concerns present a multitude of issues that can be addressed using approaches of data mining and machine learning. However, resolving such problems due to the lack of publicly available datasets is cumbersome. In this study, we first designed an efficient energy disaggregation (ED) model and evaluated it on the basis of publicly available benchmark data from the Residential Energy Disaggregation Dataset (REDD), and then we aimed to advance ED research in smart grids using the Turkey Electrical Appliances Dataset (TEAD) containing household electricity usage data. In addition, the TEAD was evaluated using the proposed ED model tested with benchmark REDD data. The Internet of things (IoT) architecture with sensors and Node-Red software installations were established to collect data in the research. In the context of smart metering, a nonintrusive load monitoring (NILM) model was designed to classify household appliances according to TEAD data. A highly accurate supervised ED is introduced, which was designed to raise awareness to customers and generate feedback by demand without the need for smart sensors. It is also cost-effective, maintainable, and easy to install, it does not require much space, and it can be trained to monitor multiple devices. We propose an efficient BERT-NILM tuned by new adaptive gradient descent with exponential long-term memory (Adax), using a deep learning (DL) architecture based on bidirectional encoder representations from transformers (BERT). In this paper, an improved training function was designed specifically for tuning of NILM neural networks. We adapted the Adax optimization technique to the ED field and learned the sequence-to-sequence patterns. With the updated training function, BERT-NILM outperformed state-of-the-art adaptive moment estimation (Adam) optimization across various metrics on REDD datasets; lastly, we evaluated the TEAD dataset using BERT-NILM training.


2022 ◽  
pp. 380-407
Author(s):  
Abdelmadjid Recioui ◽  
Youcef Grainat

The communication infrastructure constitutes the key element in smart grids. There have been great advances to enhance the way data is communicated among the different smart grid applications. The aim of this chapter is to present the data communication part of the smart grid with some pioneering developments in this topic. A succinct review of the state of art projects to improve the communication link is presented. An illustrative simulation using LABVIEW is included with a proposed idea of introducing some newly technologies involved in the current and future generations of wireless communication systems.


Author(s):  
Abdelmadjid Recioui ◽  
Youcef Grainat

The communication infrastructure constitutes the key element in smart grids. There have been great advances to enhance the way data is communicated among the different smart grid applications. The aim of this chapter is to present the data communication part of the smart grid with some pioneering developments in this topic. A succinct review of the state of art projects to improve the communication link is presented. An illustrative simulation using LABVIEW is included with a proposed idea of introducing some newly technologies involved in the current and future generations of wireless communication systems.


Electronics ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 751
Author(s):  
Anup Marahatta ◽  
Yaju Rajbhandari ◽  
Ashish Shrestha ◽  
Ajay Singh ◽  
Anup Thapa ◽  
...  

Accompanying the advancement on the Internet of Things (IoT), the concept of remote monitoring and control using IoT devices is becoming popular. Digital smart meters hold many advantages over traditional analog meters, and smart metering is one of application of IoT technology. It supports the conventional power system in adopting modern concepts like smart grids, block-chains, automation, etc. due to their remote load monitoring and control capabilities. However, in many applications, the traditional analog meters still are preferred over digital smart meters due to the high deployment and operating costs, and the unreliability of the smart meters. The primary reasons behind these issues are a lack of a reliable and affordable communication system, which can be addressed by the deployment of a dedicated network formed with a Low Power Wide Area (LPWA) platform like wireless radio standards (i.e., LoRa devices). This paper discusses LoRa technology and its implementation to solve the problems associated with smart metering, especially considering the rural energy system. A simulation-based study has been done to analyse the LoRa technology’s applicability in different architecture for smart metering purposes and to identify a cost-effective and reliable way to implement smart metering, especially in a rural microgrid (MG).


2018 ◽  
Vol 18 (2) ◽  
pp. 1-6
Author(s):  
F.C. Argatu ◽  
Violeta Argatu ◽  
B.A. Enache ◽  
C. Cepisca ◽  
G.C. Seritan ◽  
...  

AbstractThe development of intelligent smart grids requires new electrical monitoring solutions in order to optimize power consumption. The implementation of intelligent energy-monitors leads to new technical developments to optimize consumption using intrusive and non-intrusive techniques. This paper makes a review of the main methods used for load monitoring systems, indicating their advantages and disadvantages. The emergence of high-harmonic consumer electronics in electrical networks such as LED lighting sources implies the choice of the appropriate method and equipment for optimizing energy consumption based on energy signatures.


Author(s):  
Rondik J. Hassan ◽  
Subhi R. M. Zeebaree ◽  
Siddeeq Y. Ameen ◽  
Shakir Fattah Kak ◽  
Mohammed A. M. Sadeeq ◽  
...  

Automation frees workers from excessive human involvement to promote ease of use while still reducing their input of labor. There are about 2 billion people on Earth who live in cities, which means about half of the human population lives in an urban environment. This number is rising which places great problems for a greater number of people, increased traffic, increased noise, increased energy consumption, increased water use, and land pollution, and waste. Thus, the issue of security, coupled with sustainability, is expected to be addressed in cities that use their brain. One of the most often used methodologies for creating a smart city is the Internet of Things (IoT). IoT connectivity is understood to be the very heart of the city of what makes a smart city. such as sensor networks, wearables, mobile apps, and smart grids that have been developed to harness the city's most innovative connectivity technology to provide services and better control its citizens The focus of this research is to clarify and showcase ways in which IoT technology can be used in infrastructure projects for enhancing both productivity and responsiveness.


Author(s):  
Yongchao Yu ◽  
Aravind K. Mikkilineni ◽  
Stephen M. Killough ◽  
Teja Kuruganti ◽  
Pooran C. Joshi ◽  
...  

Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Ruotian Yao ◽  
Hong Zhou ◽  
Dongguo Zhou ◽  
Heng Zhang

Integrating the nonintrusive load monitoring (NILM) technology into smart meters poses challenges in demand-side management (DSM) of the smart grid when capturing detailed power information and stochastic consumption behaviours, due to the difficulties in accurately detecting load operation states in real household environments with the limited information available. In this paper, a state characteristic clustering (SCC) approach is presented for promoting the performance of event detection in NILM, which makes full use of multidimensional characteristic information. After identifying different types of state domains in an established multidimensional characteristic space, we design a sliding window difference search method (SWDS) to extract their initial clustering centre. Meanwhile, the mean-shift updating and iterating procedures are conducted to find the potential terminal stable state according to the probability density function. The above control strategy considers the transient events and stable states in a time-series dataset simultaneously, which thus allows the exact state of complex events to be obtained in a fluctuating environment. Moreover, a multisegment computing scheme is applied for fast computing in the state characteristic clustering process. Experiments of three different cases on both our real household dataset and REDD public dataset are provided to reveal the higher performance of the proposed SCC approach over the existing related methods.


Sign in / Sign up

Export Citation Format

Share Document