Mobile monitoring system to take nationwide PQ measurements on electricity transmission systems

Measurement ◽  
2009 ◽  
Vol 42 (4) ◽  
pp. 501-515 ◽  
Author(s):  
Ö. Salor ◽  
S. Buhan ◽  
Ö. Ünsar ◽  
B. Boyrazoğlu ◽  
E. Altıntaş ◽  
...  
2018 ◽  
Vol 2018 (15) ◽  
pp. 1315-1320 ◽  
Author(s):  
Ying Xue ◽  
Dechao Kong ◽  
Rui Guan ◽  
Jianing Li ◽  
Andrew Taylor ◽  
...  

2018 ◽  
Vol 5 (4) ◽  
Author(s):  
Timofey Baranov ◽  
Evgeniy Tolstikov

Deviations in the operation of the operated bridge structures on the railway are detected when damage occurs. At the same time, early detection and prognosis of damage progress can be obtained using monitoring systems. The article presents the methods and technologies for the use of mobile monitoring systems for assessing the actual operation of the metal superstructure of the railway bridge with the main driving trusses. The hardware of the measuring complex is considered, the main measuring instrument is the glued electrical strain gauges. The monitoring system kept a continuous record of sensor readings for 28 days. To process the data received by the monitoring system, specialized software has been developed that systematizes the incoming information. Analysis of the actual supertructure operation is carried out by finding the relationship of stresses in the various elements of the superstructure, arising under the same load. This approach allowed us to exclude the factor of unknown intensity of the temporary load. The results of monitoring the work of the superstructure are given. In total, over 680 train passage records were analyzed, which allowed for a statistical description of the data. The theoretical values of the relationship of stresses in the elements of the superstructure are determined using the apparatus of the influence lines obtained by a numerical method. The conclusions are made about the distribution of deformations of the superstructure under temporary load and about the degree of compliance with theoretical calculations. The construction factors and the values of their statistical scatter are determined, the actual dynamic factors are statistically calculated. The construction factors calculated from the stress ratios lie in the range of 0.8-1.116. Dynamic factors are within 1.13 and do not exceed the rated values.


2021 ◽  
Author(s):  
Daniele Piazzolla ◽  
Giancarlo Della Ventura ◽  
Andrea Terribili ◽  
Alessandra Conte ◽  
Sergio Scanu ◽  
...  

<p><span>The increase in urbanization requires intense energy consumption and causes an increase in emissions from transportation and industrial sources. As a result, a variety of pollutants are released into the atmosphere with negative effects on the health of organisms and ecosystems as well as on human health. In this perspective, coastal areas are considered "hot</span><span>spot</span><span>s" of environmental contamination since they often host multiple human activities. This issue is particularly dramatic close to important maritime hubs, as a matter of fact overall 25% of the world energy consumption (a major source of pollution) is employed for transport, and over 80% of world trade is carried by sea (Gobbi et al. 2020). </span><span>During 2019-2020 we carried out a continuous monitoring of particulate matter in a fixed station to understand the sources of air pollution in the northern Latium coastal area. This area has been selected for the presence of industrial activities located in a few kilometers of coast (Piazzolla et al. 2020). </span><span>The amount and typology of solid particles present in the environment have been assessed by implementing a reliable cost-effective device (Gozzi et al. 2015, 2017) which integrates an optical particle counter and a filtering set-up able to collect particulate matter with dimension > 400 nm (Della Ventura et al. 2017). Filters were periodically removed from the device and recovered microparticles were subjected to microscopic (optical and electron), spectroscopic (IR, Raman), and microchemical (SEM-EDS) characterization. Results were related to the wind speed and direction measured by</span><span> the </span>Civitavecchia Coastal Environment Monitoring System<span> (</span><span>Bonamano et al. 2015), allowing an evaluation of the contribution of anthropic (industrial and maritime) activities to the pollution in this area.</span></p><p>Bonamano S., Piermattei V., Madonia A., Mendoza F., Pierattini A., Martellucci R., ... <span>& Marcelli M. (2016). The Civitavecchia Coastal Environment Monitoring System (C-CEMS): a new tool to analyze the conflicts between coastal pressures and sensitivity areas. Ocean Science, 12(1).</span><span> DOI 10.5194/os-12-87-2016</span></p><p><span>Della Ventura G., Gozzi F., Marcelli A. (2017) The MIAMI project: design and testing of an IoT lowcost device for mobile monitoring of PM and gaseous pollutants. Superstripe Press, Science Series, 12, 41-44, ISBN 9788866830764</span></p><p>Gobbi G.P., Di Liberto L., Barnaba F. (2020). <span>Impact of port emissions on Eu-regulated and non-regulated air quality indicators: the case of Civitavecchia (Italy). Science of the Total environment, 719. DOI 10.1016/j.scitotenv.2019.134984 </span></p><p><span>Gozzi, F., Della Ventura, G., Marcelli, A. (2015) Mobile monitoring of particulate matter: State of art and perspectives. Atmospheric Pollution Research, 7, 228-234. DOI 10.1016/j.apr.2015.09.007.</span></p><p><span>Gozzi F., Della Ventura G., Marcelli A., Lucci F. (2017) Current status of particulate matter pollution in Europe and future perspectives: a review. Journal of Materials and Environmental Science, 8, 1901-1909. ISSN 2028-2508</span></p><p><span>Piazzolla D., Cafaro V., de Lucia G. A., Mancini E., Scanu S., Bonamano S., ... & Marcelli M. (2020). Microlitter pollution in coastal sediments of the northern Tyrrhenian Sea, Italy: microplastics and fly-ash occurrence and distribution. </span>Estuarine, Coastal and Shelf Science, 106819. DOI 10.1016/j.ecss.2020.106819</p>


2010 ◽  
Vol 175 (1-4) ◽  
pp. 349-366 ◽  
Author(s):  
Mohammad Shahidul Islam ◽  
James S. Bonner ◽  
Temitope O. Ojo ◽  
Cheryl Page

Sign in / Sign up

Export Citation Format

Share Document