Estimation of pork quality in live pigs using biopsied muscle fibre number composition

Meat Science ◽  
2018 ◽  
Vol 137 ◽  
pp. 130-133 ◽  
Author(s):  
Jun-Mo Kim ◽  
Kyu-Sang Lim ◽  
Kyung-Bo Ko ◽  
Youn-Chul Ryu
1991 ◽  
Vol 52 (3) ◽  
pp. 527-533 ◽  
Author(s):  
C. M. Dwyer ◽  
N. C. Stickland

ABSTRACTA study of the determinants of inter- and intra-litter variation in muscle fibre number was carried out on five litters of Large White piglets. Fresh frozen, whole mid-belly sections of m. semitendinosus were stained to demonstrate acid-stable myosin adenosine triphosphatase activity. From these sections it was possible to identify which fibres had developed as primary and which as secondary fibres. Estimations of total muscle fibre number, total primary fibre number and ratio of secondary fibres to primary fibres were made for each animal. Results demonstrated that primary fibre number varied between litters (P<0·01) and was responsible for the variation in total muscle fibre number (P < 005) between litters since there was no significant variation in secondary: primary ratio. Within-litter differences in total fibre number could be attributed to both the secondary: primary ratio and primary fibre number, in almost equal contributions. However, when only the largest and smallest extremes of the litters were compared, variation in fibre number was due to the significant difference in the secondary: primary ratio (P<0·01). Taken as a whole, the results appear to show that primary fibre number is responsible for all the variation in muscle fibre number between litters, and also makes a significant contribution, with secondary: primary fibre ratio, to the variation present within a litter. The factors responsible for variations in primary and secondary fibre numbers are discussed.


2001 ◽  
Vol 204 (16) ◽  
pp. 2763-2771 ◽  
Author(s):  
D. WILKES ◽  
S. Q. XIE ◽  
N. C. STICKLAND ◽  
H. ALAMI-DURANTE ◽  
M. KENTOURI ◽  
...  

SUMMARY The influence of changes in environmental temperature on the mRNA levels of myogenic regulatory factors (MRFs), i.e. MyoD and myogenin, as well as myosin heavy chain (MyHC) were studied during early larval development in rainbow trout and sea bass. Phosphoimager analysis of northern blots indicated that there is an optimum temperature for the RNA transcript levels of MRF and MyHC RNA in trout and in sea bass larvae. In the trout strain studied, the highest concentration for MRF and MyHC transcripts was found at 8°C rather than 4°C or 20°C. In European sea bass, the highest concentrations of MRF and MyHC mRNA were observed at 15-20°C rather than 13°C. Raising sea bass larvae at 15°C was associated with higher MyHC gene expression as well as a trend towards an increase in total muscle fibre number and higher growth rates after transfer at ambient temperature. Results suggest that mRNA levels of MRF and MyHC can be used to optimise early development. An experiment in which the temperature was changed illustrates the consequence of precise temporal expression of MRF genes in specifying muscle fibre number at critical stages during early development.


2007 ◽  
Vol 98 (2) ◽  
pp. 292-299 ◽  
Author(s):  
Joanne E. Mallinson ◽  
Dean V. Sculley ◽  
Jim Craigon ◽  
Richard Plant ◽  
Simon C. Langley-Evans ◽  
...  

This study assessed the impact of reduced dietary protein during specific periods of fetal life upon muscle fibre development in young rats. Pregnant rats were fed a control or low-protein (LP) diet at early (days 0–7 gestation, LPEarly), mid (days 8–14, LPMid), late (days 15–22, LPLate) or throughout gestation (days 0–22, LPAll). The muscle fibre number and composition in soleus and gastrocnemius muscles of the offspring were studied at 4 weeks of age. In the soleus muscle, both the total number and density of fast fibres were reduced in LPMid females (P = 0·004 for both, Diet × Sex × Fibre type interactions), while both the total number and density of glycolytic (non-oxidative) fibres were reduced in LPEarly, LPMid and LPLate (but not LPAll) offspring compared with controls (P < 0·001 for both, Diet × Fibre type interaction). In the gastrocnemius muscle, only the density of oxidative fibres was reduced in LPMid compared with control offspring (P = 0·019, Diet × Fibre type interaction), with the density of slow fibres being increased in LPAll males compared with control (P = 0·024, Diet × Sex × Fibre type interaction). There were little or no effects of maternal diet on fibre type diameters in the two muscles. In conclusion, a maternal low-protein diet mainly during mid-pregnancy reduced muscle fibre number and density in 4-week-old rats, but there were muscle-specific differences in the fibre types affected.


1992 ◽  
Vol 146 (2) ◽  
pp. 281-282 ◽  
Author(s):  
Y. OISHI ◽  
A. ISHIHARA ◽  
S. KATSUTA
Keyword(s):  

2001 ◽  
Vol 72 (2) ◽  
pp. 279-287 ◽  
Author(s):  
C.A. Maltin ◽  
G.E. Lobley ◽  
C.M. Grant ◽  
L.A. Miller ◽  
D.J. Kyle ◽  
...  

AbstractEighteen purebred steers of three genotypes, Aberdeen Angus (AA), Charolais (CH) and Holstein (HO), were divided within genotype into three groups of six animals and offered one of three different levels of feeding either moderate (M/M) or high (H/H) both for 20 weeks or moderate for the first 10 weeks followed by high for the remaining 10 weeks (M/H). Growth rates during the final 10 weeks of the experimental period differed between dietary regimen (M/M = 0·87; M/H = 1·25; and H/H = 1·02 kg/day; s.e.d. = 0·08;P< 0·001). Over the entire 20 week experimental period animals offered the M/M level of feeding grew more slowly (0·97 kg/day) than those offered the M/H and H/H level of feeding (1·20 kg/day; s.e.d. = 0·06;P< 0·001). Mean growth rates for CH, HO and AA steers were 1·21, 1·13 and 1·03 kg/day (s.e.d. = 0·06;P< 0·05). The animals were all slaughtered at a fixed age of 18 months, according to the Meat and Livestock Commission Blueprint for beef and, 48 h post mortem, samples of m. longissimus lumborum (LL) and m. vastus lateralis (VL) were removed for analyses.Muscle fibres were classified histochemically, according to their contractile and metabolic properties, and muscle fibre size was measured. Fibre type frequency was calculated and, in LL, the total fibre number of the muscle was estimated. There was little impact of feeding level, or consequentially growth rate, on muscle fibre frequency and size. The effects seen were confined mainly to LL where there were significant differences between the M/M and H/ H groups with respect to fast twitch glycolytic fibres (mean % frequency (M/M = 40·1 and H/H = 44·3; s.e.d. = 1·4;P< 0·01); mean % area (M/M = 51·9 and H/H 56·0; s.e.d. = 1·5;P< 0·05)) and apparent total fibre number (M/ M = 35·0; and H/H = 41·9 ✕ 104; s.e.d. = 1·7;P< 0·05) which were greater in H/H than in M/M groups. However, in both LL and VL the predominant differences were related to genotype; in particular, overall fibre size was smallest in CH, while slow oxidative (SO; type I) fibre area was highest in AA. For LL, analysis across all animals showed a positive relationship between SO area, % area, % frequency and overall acceptability of meat at 14 days as evaluated by a trained sensory panel. No such relationship was observed for VL. The data suggest that in this study manipulation of feeding level has only a small impact on muscle fibre characteristics and that the differences between genotype and muscle type may be more important in determining the variability of overall acceptability than growth rate.


Sign in / Sign up

Export Citation Format

Share Document