Directional-stability-aware brake blending control synthesis for over-actuated electric vehicles during straight-line deceleration

Mechatronics ◽  
2016 ◽  
Vol 38 ◽  
pp. 121-131 ◽  
Author(s):  
Chen Lv ◽  
Junzhi Zhang ◽  
Yutong Li ◽  
Ye Yuan
1990 ◽  
Vol 112 (3) ◽  
pp. 489-495 ◽  
Author(s):  
A. Y. Lee

The high-speed cruising stability of passenger vehicles may be enhanced with stability augmentation systems. These systems would modify the driver’s steering command to the vehicle’s front wheels, and steer the rear wheels according to measured vehicle conditions such as its yaw-rate. In this simulation study, an explicit driver model is used in the design of these stability augmentation systems. For ease of implementation, only low-order controllers are synthesized using parameter optimization. The high-speed, straight-line stability of a passenger vehicle in a cross-wind is simulated to evaluate steering performance with these controllers. Our results show that stability augmented steering has the potential to improve the directional stability of passenger vehicles.


Energies ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5766
Author(s):  
Songlin Yang ◽  
Jingan Feng ◽  
Bao Song

The optimal control strategy for the decoupling of drive torque is proposed for the problems of runaway and driving stability in straight-line driving of electric vehicles driven by four-wheel hub motors. The strategy uses a hierarchical control logic, with the upper control logic layer being responsible for additional transverse moment calculation and driving anti-slip control; the middle control logic layer is responsible for the spatial motion decoupling for the underlying coordinated distribution of the four-wheel drive torque, on the basis of which the drive anti-skid control of a wheel motor-driven electric vehicle that takes into account the transverse motion of the whole vehicle is realized; the lower control logic layer is responsible for the optimal distribution of the driving torque of the vehicle speed following control. Based on the vehicle dynamics software Carsim2019.0 and MATLAB/Simulink, a simulation model of a four-wheel hub motor-driven electric vehicle control system was built and simulated under typical operating conditions such as high coefficient of adhesion, low coefficient of adhesion and opposing road surfaces. The research shows that the wheel motor drive has the ability to control the stability of the whole vehicle with large intensity that the conventional half-axle drive does not have. Using the proposed joint decoupling control of the transverse pendulum motion and slip rate as well as the optimal distribution of the drive force with speed following, the transverse pendulum angular speed and slip rate can be effectively controlled with the premise of ensuring the vehicle speed, thus greatly improving the straight-line driving stability of the vehicle.


Author(s):  
E Esmailzadeh ◽  
A Goodarzi ◽  
G R Vossoughi

The innovative powertrain configuration of modern electric vehicles with four-wheel independent drive (4WID) provides the possibility of simple and exact yaw moment control by controlling the electric motor of every wheel independently. In this study, a genuine control strategy for optimum direct yaw moment control is proposed. Although this can be considered as a global control system for traction control of 4WID electric vehicles, the analysis is quite general and can be applied to other types of vehicle. The directional vehicle model is derived and, in accordance with the optimal control theory, an optimum yaw moment controller is designed. Two versions of the control law are developed and the dynamic performance of each one is determined and compared. Numerical simulation of the vehicle directional model, with and without the use of the optimal yaw moment controller, is carried out. Results indicate that considerable improvement in the directional stability of the vehicle can be achieved when the optimal yaw moment controller is engaged.


2020 ◽  
Vol 10 (17) ◽  
pp. 5747
Author(s):  
Marian J. Łopatka ◽  
Arkadiusz Rubiec

Heavy-wheeled vehicles with articulated hydraulic steering systems are widely used in construction, road building, forestry, and agriculture, as transport units and tool-carriers because they have many unique advantages that are not available in car steering systems, based on the Ackermann principle, such as—high cross-country mobility, excellent maneuverability, and high payload and lift capacity, due to heavy axles components. One problem that limits their speed of operation and use efficiency is that they have poor directional stability. During straight movement, articulated tractors’ deviate from a straight line and permanent driver correction is required. This limits the vehicles’ speed and productivity. In this study, we describe a driver-aid system concept that would improve the directional stability of articulated vehicles. Designing such a system demands a comprehensive knowledge of the reasons for the snaking phenomenon and driver behaviors. The results of our articulated vehicle directional stability investigation are presented. On this basis, we developed models of articulated vehicles with hydraulic steering systems and driver interaction. We next added the stabilizing system to the model. A simulation demonstrated the possibility of directional stability improvement.


Author(s):  
Behrouz Najjari ◽  
Mehdi Mirzaei ◽  
Amin Tahouni

This paper looks into the energy management and directional stability of four-in-wheel driven electric vehicles, simultaneously. In the proposed strategy, the optimal driving torques are initially distributed between the wheels by considering the condition for minimum losses of motors using the motor efficiency model. In risky maneuvers, a novel optimal torque vectoring system is developed to intentionally change the initial optimal torques for the generation of required stabilizing yaw moment. For designing the stability controller, a new constrained control method is analytically developed based on the prediction of continuous nonlinear vehicle models. The proposed control method restricts the side-slip angle to guarantee the stability. Also, the required control torque for each motor is restricted within the admissible range according to the motor map. As another result of the constrained strategy, a small change in the optimal energy consumption is occurred for improved stability because of using minimum external yaw moment. In simulation studies, a good performance of the developed control system to provide both directional stability and drivability of electric vehicle with high energy efficiency is presented at different driving conditions using 14-degrees-of-freedom vehicle model. A comparative study with the conventional model predictive control method indicates the speed of the proposed constrained control method and the ease of its solution and implementation.


Author(s):  
Cheng-Ho Li ◽  
Yu-Ying Peng ◽  
Tien-Ho Gau ◽  
James H. Wang ◽  
Chin-Pin Chien

Light electric vehicles (LEV) have been developed for the interests of green, low pollution and low noise. The development of in-wheel motors improve electric vehicles’ power efficiency and simplify the transmission system design. However, to coordinate the wheel torques and their angular velocities becomes an issue, which affects the vehicle’s dynamics and handling stability. In this paper, an electric differential system (EDS) for a rhombus-chassis EV is focused on. The relation of driving wheels’ speeds was derived particularly for rhombus configuration, and it has been carried out on a control system. Compared to the conventional control strategy for three-wheeled vehicles, the proposed method could estimate a more accurate turning center with sensing the tail wheel’s rotating angle that is beneficial to smoothen vehicle’s cornering with a more adequate differential relation. Experiments were carried out with a real concept car “ITRI LEV 1,” and tests such as straight-line test, constant-radius test, and Slalom turn test were conducted. The results show the EDS could effectively improve vehicle’s maneuverability and stability. The required steering angle became larger and trending to under steering while enabling the proposed EDS system, and wheel skidding was also effectively prevented in both constant-radius and Slalom turn tests.


Sign in / Sign up

Export Citation Format

Share Document