scholarly journals Research on Decoupled Optimal Control of Straight-Line Driving Stability of Electric Vehicles Driven by Four-Wheel Hub Motors

Energies ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5766
Author(s):  
Songlin Yang ◽  
Jingan Feng ◽  
Bao Song

The optimal control strategy for the decoupling of drive torque is proposed for the problems of runaway and driving stability in straight-line driving of electric vehicles driven by four-wheel hub motors. The strategy uses a hierarchical control logic, with the upper control logic layer being responsible for additional transverse moment calculation and driving anti-slip control; the middle control logic layer is responsible for the spatial motion decoupling for the underlying coordinated distribution of the four-wheel drive torque, on the basis of which the drive anti-skid control of a wheel motor-driven electric vehicle that takes into account the transverse motion of the whole vehicle is realized; the lower control logic layer is responsible for the optimal distribution of the driving torque of the vehicle speed following control. Based on the vehicle dynamics software Carsim2019.0 and MATLAB/Simulink, a simulation model of a four-wheel hub motor-driven electric vehicle control system was built and simulated under typical operating conditions such as high coefficient of adhesion, low coefficient of adhesion and opposing road surfaces. The research shows that the wheel motor drive has the ability to control the stability of the whole vehicle with large intensity that the conventional half-axle drive does not have. Using the proposed joint decoupling control of the transverse pendulum motion and slip rate as well as the optimal distribution of the drive force with speed following, the transverse pendulum angular speed and slip rate can be effectively controlled with the premise of ensuring the vehicle speed, thus greatly improving the straight-line driving stability of the vehicle.

2013 ◽  
Vol 690-693 ◽  
pp. 3036-3041 ◽  
Author(s):  
Jian Hua Li ◽  
Chuan Xue Song ◽  
Li Qiang Jin

According to the brake characteristics of in-wheel motor drive electric vehicles, and basing on threshold control method, we describe one kind of composite ABS control theory about electric motor ABS combined with hydraulic friction ABS, and establish a co-simulation vehicle model. The composite ABS control method is a control method that the electric motor ABS control works together with the hydraulic ABS control. Both of the two modes of ABS control logic were using logic threshold control method. The model of the in-wheel motor drive electric vehicle was established with AMESim, and the model of the composite ABS controller was built with Simulink. The control performance of composite ABS in different braking strength and different road friction coefficients is simulated. Co-simulation was carried out. Through analysis, a number of parameters curves were obtained. It proves that the composite ABS control method for in-wheel motor drive electric vehicles can effectively control the slip rate, and ensure braking stability.


2013 ◽  
Vol 543 ◽  
pp. 163-166
Author(s):  
Đorđe Obradović ◽  
Živorad Mihajlović ◽  
Vladimir Milosavljević ◽  
Miloš B. Živanov

In this paper, one solution of graphic LCD control board for lightweight electric vehicles is shown. The main idea was to build adoptable hardware solution that can be fast and easy applied in different electrical vehicles and easy for modifications. It was designed, built and tested graphic LCD for monitoring and seting up of main parameters and control signals for lightweight electric vehicle. Some of parameters that could be displayed on graphic LCD are charge status, actual speed, total mileage, daily mileage and indicators of direction. Also we discussed about other possibilities for some sensors that can be used to monitor vehicle speed and ways of visualizing the parameters of interest. The main principles that were used during the selection of hardware solutions implementation also are shown.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Guodong Yin ◽  
Shanbao Wang ◽  
Xianjian Jin

To improve the driving performance and the stability of the electric vehicle, a novel acceleration slip regulation (ASR) algorithm based on fuzzy logic control strategy is proposed for four-wheel independent driving (4WID) electric vehicles. In the algorithm, angular acceleration and slip rate based fuzzy controller of acceleration slip regulation are designed to maintain the wheel slip within the optimal range by adjusting the motor torque dynamically. In order to evaluate the performance of the algorithm, the models of the main components related to the ASR of the four-wheel independent driving electric vehicle are built in MATLAB/SIMULINK. The simulations show that the driving stability and the safety of the electric vehicle are improved for fuzzy logic control compared with the conventional PID control.


2011 ◽  
Vol 110-116 ◽  
pp. 3007-3015
Author(s):  
Gwangmin Park ◽  
Byeongjeom Son ◽  
Daehyun Kum ◽  
Seonghun Lee ◽  
Sangshin Kwak

This paper presents a dynamic modeling, simulation, and analysis of a Battery Electric Vehicle (BEV) according to vehicle dynamic characteristics. Mathematical model variants for the components of BEVs can be modeled and investigated using the Matlab/Simulink software. In order to compare the dynamic performance of BEVs under inverter fault and normal conditions, the CarSim co-simulation platform is configured with real vehicle calibration data. Using this approach, it was possible to quickly check for dynamic performance issues of an electric vehicle without incurring the time delay and cost. The simulation results such as motor output, vehicle speed/acceleration, and propulsion forces are discussed and compared for each drive mode.


2013 ◽  
Vol 21 (02) ◽  
pp. 1350013 ◽  
Author(s):  
CHIH-CHIU SHEN ◽  
JAU-HUAI LU

Due to the concern in energy shortage and environmental protection, electric vehicle is considered to be a substitute for the conventional gasoline-powered vehicles due to its characteristics of high efficiency and no emission. However, the load of air conditioning causes a serious problem for electric vehicles, especially in tropical and subtropical areas. The compressor of conventional air conditioning system is driven by engine and its speed is thus coupled to vehicle speed. In electric vehicles, the compressor is driven by electric motors and compressor speed could be decoupled to vehicle speed. This mechanism provides an opportunity to improve the energy efficiency of electric vehicle since the operation of air conditioning system may be independent of vehicle speed. The purpose of this paper is to find out the electric fan operation model as vehicle speed is varied. This paper was to establish a theoretical model for the condenser of automotive air conditioner and to conduct simulation to evaluate the effect of vehicle speed on the cooling capacity and sub-cooling of condenser. Results of simulation demonstrated that vehicle with 6 km h-1 speed has the 5°C of sub-cooling at 0.0266 kg s-1 of refrigerant flow rate and the cooling capacity was 4.93 kW. In this study, an increase of 16.6% in cooling capacity can be reached as the speed of vehicle was raised from 6 to 110 km h-1 and can promote the sub-cooling to 19.5°C. It was also found that the cooling capacity of air conditioner is extremely sensitive to vehicle speed while the vehicle is running at low speed. Furthermore, increases in the vehicle speed resulted in reduction of the length of superheat region from 17.5 to 8.5 cm. Finally, a correlation among these variables and the simulated cooling capacity was obtained in this study, enabling the relevant researchers to evaluate automotive air conditioner performance under different vehicle speeds more easily.


2021 ◽  
Vol 2076 (1) ◽  
pp. 012091
Author(s):  
Jiwei Geng ◽  
Qun Chi

Abstract The consumption of gasoline and diesel for cars is beyond imagination. Along with these problems comes environmental destruction. In order to achieve the two major indicators of power performance and economy, the most critical component of electric vehicles --- the power system is optimized and improved, and simulation is used to verify it on this basis‥ It can be concluded that the maximum vehicle speed is greater than 120km/h, the maximum gradeability exceeds 30%, the cruising range reaches 178km.


2018 ◽  
Author(s):  
Umanand L

This article presents a frank and open opinion on the challenges that will be faced in moving towards an electric mass transport ecosystem. World over there is considerable research activity on electric vehicles and hybrid electric vehicles. There seems to be a global effort to move from an ICE driven ecosystem to electric vehicle ecosystem. There is no simple means to make this transition. This road is filled with hurdles and challenges. This paper poses and discusses these challenges and possible solutions for enabling EVs.


Electricity ◽  
2021 ◽  
Vol 2 (1) ◽  
pp. 91-109
Author(s):  
Julian Wruk ◽  
Kevin Cibis ◽  
Matthias Resch ◽  
Hanne Sæle ◽  
Markus Zdrallek

This article outlines methods to facilitate the assessment of the impact of electric vehicle charging on distribution networks at planning stage and applies them to a case study. As network planning is becoming a more complex task, an approach to automated network planning that yields the optimal reinforcement strategy is outlined. Different reinforcement measures are weighted against each other in terms of technical feasibility and costs by applying a genetic algorithm. Traditional reinforcements as well as novel solutions including voltage regulation are considered. To account for electric vehicle charging, a method to determine the uptake in equivalent load is presented. For this, measured data of households and statistical data of electric vehicles are combined in a stochastic analysis to determine the simultaneity factors of household load including electric vehicle charging. The developed methods are applied to an exemplary case study with Norwegian low-voltage networks. Different penetration rates of electric vehicles on a development path until 2040 are considered.


Sign in / Sign up

Export Citation Format

Share Document