Kinematics and dynamics of 2(3-RPS) manipulators by means of screw theory and the principle of virtual work

2008 ◽  
Vol 43 (10) ◽  
pp. 1281-1294 ◽  
Author(s):  
Jaime Gallardo-Alvarado ◽  
Carlos R. Aguilar-Nájera ◽  
Luis Casique-Rosas ◽  
José M. Rico-Martínez ◽  
Md. Nazrul Islam
Robotica ◽  
2019 ◽  
Vol 38 (2) ◽  
pp. 299-316 ◽  
Author(s):  
Siamak Pedrammehr ◽  
Houshyar Asadi ◽  
Saeid Nahavandi

SummaryThis paper investigates the vibrations of hexarot simulators. The generalized modeling of kinematics and dynamics formulation of a hexarot mechanism is addressed. This model considers the flexible manipulator with the base motion. The dynamic formulation has been developed based on the principle of virtual work. The dynamic model consists of the stiffness of the different parts of the mechanism, the effects of gravity and inertia, torque and force related to the joints viscous friction. Finally, the response of the end effector at various frequencies has been presented, and the vibrations of the mechanism and the dynamic stability index have been investigated.


2013 ◽  
Vol 373-375 ◽  
pp. 34-37
Author(s):  
Jian Xin Yang ◽  
Zhen Tao Liu ◽  
Jian Wei Sun

The dynamic modeling method for parallel robot based on the principle of virtual work and equivalent tree structure is proposed by taking off the platform and the chains as well as degenerating parallel robot into a tree structure, the closed-form solutions for the inverse and forward dynamics models of parallel robot are derived. The method is applied on kinematics and dynamics analysis of a representative 3-RRR spherical parallel robot.


1976 ◽  
Vol 4 (4) ◽  
pp. 219-232 ◽  
Author(s):  
Ö. Pósfalvi

Abstract The effective elastic properties of the cord-rubber composite are deduced from the principle of virtual work. Such a composite must be compliant in the noncord directions and therefore undergo large deformations. The Rivlin-Mooney equation is used to derive the effective Poisson's ratio and Young's modulus of the composite and as a basis for their measurement in uniaxial tension.


Author(s):  
Alfredo Gay Neto ◽  
Peter Wriggers

AbstractWe present a version of the Discrete Element Method considering the particles as rigid polyhedra. The Principle of Virtual Work is employed as basis for a multibody dynamics model. Each particle surface is split into sub-regions, which are tracked for contact with other sub-regions of neighboring particles. Contact interactions are modeled pointwise, considering vertex-face, edge-edge, vertex-edge and vertex-vertex interactions. General polyhedra with triangular faces are considered as particles, permitting multiple pointwise interactions which are automatically detected along the model evolution. We propose a combined interface law composed of a penalty and a barrier approach, to fulfill the contact constraints. Numerical examples demonstrate that the model can handle normal and frictional contact effects in a robust manner. These include simulations of convex and non-convex particles, showing the potential of applicability to materials with complex shaped particles such as sand and railway ballast.


Author(s):  
J. P. Meijaard ◽  
V. van der Wijk

Some thoughts about different ways of formulating the equations of motion of a four-bar mechanism are communicated. Four analytic methods to derive the equations of motion are compared. In the first method, Lagrange’s equations in the traditional form are used, and in a second method, the principle of virtual work is used, which leads to equivalent equations. In the third method, the loop is opened, principal points and a principal vector linkage are introduced, and the equations are formulated in terms of these principal vectors, which leads, with the introduced reaction forces, to a system of differential-algebraic equations. In the fourth method, equivalent masses are introduced, which leads to a simpler system of principal points and principal vectors. By considering the links as pseudorigid bodies that can have a uniform planar dilatation, a compact form of the equations of motion is obtained. The conditions for dynamic force balance become almost trivial. Also the equations for the resulting reaction moment are considered for all four methods.


2014 ◽  
Vol 527 ◽  
pp. 140-145
Author(s):  
Da Xu Zhao ◽  
Bai Chen ◽  
Guo Zhong Shou ◽  
Yu Qi Gu

In view of the existing problems of traditional interventional catheters, particularly poor activity, operation difficulty and mass blind area, a novel interventional catheter with a cable-driven active head-end is proposed, and a prototype was built to verify the performance. This paper deals with the kinematics and dynamics of the cable-driven prototype, a dynamic model based on Kanes method combined with screw theory was presented in this paper. According the mathematical model and the prototypes structure, the analysis of kinematics and dynamics of active head-end-end is done in the environment of Mathematica. The needed driving forces of every joint when the system moving along planned trajectory are calculated. The results can provide a basis for the structure design and motion control of the interventional active catheter.


2012 ◽  
Vol 28 (3) ◽  
pp. 385-401 ◽  
Author(s):  
J. Jesús Cervantes-Sánchez ◽  
José M. Rico-Martínez ◽  
Salvador Pacheco-Gutiérrez ◽  
Gustavo Cerda-Villafaña

Author(s):  
Quantian Luo ◽  
Liyong Tong

This paper presents optimal design for nonlinear compliant cellular structures with bi- and multi-stable states via topology optimization. Based on the principle of virtual work, formulations for displacements and forces are derived and expressed in terms of stress and strain in all load steps in nonlinear finite element analysis. Optimization for compliant structures with bi-stable states is then formulated as: 1) to maximize the displacement under specified force larger than its critical one; and 2) to minimize the reaction force for the prescribed displacement larger than its critical one. Algorithms are developed using the present formulations and the moving iso-surface threshold method. Optimal design for a unit cell with bi-stable states is studied first, and then designs of multi-stable compliant cellular structures are discussed.


Sign in / Sign up

Export Citation Format

Share Document