Parametric design and multi-objective optimization of a general 6-PUS parallel manipulator

2020 ◽  
Vol 152 ◽  
pp. 103913 ◽  
Author(s):  
S. Nader Nabavi ◽  
Morteza Shariatee ◽  
Javad Enferadi ◽  
Alireza Akbarzadeh
2019 ◽  
Vol 953 ◽  
pp. 53-58 ◽  
Author(s):  
Elsayed Fathallah

Excellent mechanical behavior and low density of composite materials make them candidates to replace metals for many underwater applications. This paper presents a comprehensive study about the multi-objective optimization of composite pressure hull subjected to hydrostatic pressure to minimize the weight of the pressure hull and maximize the buckling load capacity according to the design requirements. Two models were constructed, one model constructed from Carbon/Epoxy composite (USN-150), the other model is metallic pressure hull constructed from HY100. The analysis and the optimization process were completely performed using ANSYS Parametric Design Language (APDL). Tsai-Wu failure criterion was incorporated in the optimization process. The results obtained emphasize that, the submarine constructed from Carbon/Epoxy composite (USN-150) is better than the submarine constructed from HY100. Finally, an optimized model with an optimum pattern of fiber orientations was presented. Hopefully, the results may provide a valuable insight for the future of designing composite underwater vehicles.


Author(s):  
Lothar Birk

The paper reports on the continuous development of an automated optimization procedure for the design of offshore structure hulls. Advanced parametric design algorithms, numerical analysis of wave-body interaction and formal multi-objective optimization are integrated into a computer aided design system that produces hull shapes with superior seakeeping qualities. By allowing multiple objectives in the procedure naval architects may pursue concurrent design objectives, e.g. minimizing heave motion while simultaneously maximizing deck load. The system develops a Pareto frontier of the best design alternatives for the user to choose from. Constraints are directly considered within the optimization algorithm thus eliminating infeasible or unfit designs. The paper summarizes the new developments in the shape generation, illustrates the optimization procedure and presents results of the multi-objective hull shape optimization.


2011 ◽  
Vol 317-319 ◽  
pp. 794-798
Author(s):  
Zhi Bin Li ◽  
Yun Jiang Lou ◽  
Yong Sheng Zhang ◽  
Ze Xiang Li

The paper addresses the multi-objective optimization of a 2-DoF purely translational parallel manipulator. The kinematic analysis of the Proposed T2 parallel robot is introduced briefly. The objective functions are optimized simultaneously to improve Regular workspace Share (RWS) and Global Conditioning Index (GCI). A Multi-Objective Evolution Algorithm (MOEA) based on the Control Elitist Non-dominated Sorting Genetic Algorithm (controlled ENSGA-II) is used to find the Pareto front. The optimization results show that this method is efficient. The parallel manipulator prototype is also exhibited here.


Author(s):  
Zhongxing Yang ◽  
Dan Zhang

Abstract A novel 5-DOF 3T2R parallel manipulator is designed with chains in perpendicular planes. The synthesis is based on motion sets intersection and disseminated Chebychev-Grübler-Kutzbach formula. A boundary offset method is developed to detect link interference. Multi-objective optimization is practiced on the design for improved performances. Stiffness based on oriented platform coordinate is developed. This paper also discusses the potential applications of the design.


Author(s):  
José-Alfredo Leal-Naranjo ◽  
Marco Ceccarelli ◽  
Christopher-René Torres-San-Miguel ◽  
Luis-Antonio Aguilar-Perez ◽  
Guillermo Urriolagoitia-Sosa ◽  
...  

Author(s):  
Zhongran Chi ◽  
Haiqing Liu ◽  
Shusheng Zang

This paper discusses the approach of cooling design optimization of a high-pressure turbine (HPT) endwall with applied 3D conjugate heat transfer (CHT) computational fluid dynamics (CFD). This study involved the optimization of the spacing of impingement jet array and the exit width of shaped holes, which are different for each cooling cavity. The optimization objectives were to reduce the wall-temperature level and to increase the aerodynamic performance. The optimization methodology consisted of an in-house parametric design and CFD mesh generation tool, a CHT CFD solver, a database of CFD results, a metamodel, and an algorithm for multi-objective optimization. The CFD tool was validated against experimental data of an endwall at CHT conditions. The metamodel, which could efficiently estimate the optimization objectives of new individuals without CFD runs, was developed and coupled with nondominated sorting genetic algorithm II (NSGA II) to accelerate the optimization process. Through the optimization search, the Pareto front of the problem was found in each iteration. The accuracy of metamodel with more iterations was improved by enriching database. But optimal designs found by the last iteration are almost identical with those of the first iteration. Through analyzing extra CFD results, it was demonstrated that the design variables in the Pareto front successfully reached the optimal values. The optimal pitches of impingement arrays could be decided accommodating the local thermal load while avoiding jet lift-off of film coolant. It was also suggested that cylindrical film holes near throat should be beneficial to both aerodynamic and cooling performances.


2021 ◽  
Vol 13 (10) ◽  
pp. 5550
Author(s):  
Aleksander A. Kondratenko ◽  
Martin Bergström ◽  
Aleksander Reutskii ◽  
Pentti Kujala

This article presents a new holistic multi-objective design approach for the optimization of Arctic Offshore Supply Vessels (OSVs) for cost- and eco-efficiency. The approach is intended to be used in the conceptual design phase of an Arctic OSV. It includes (a) a parametric design model of an Arctic OSV, (b) performance assessment models for independently operating and icebreaker-assisted Arctic OSVs, and (c) a novel adaptation of the Artificial Bee Colony (ABC) algorithm for multi-objective optimization of Arctic OSVs. To demonstrate the feasibility and viability of the proposed optimization approach, a series of case studies covering a wide range of operating scenarios are carried out. The results of the case studies indicate that the consideration of icebreaker assistance significantly extends the feasible design space of Arctic OSVs, enabling solutions with improved energy- and cost-efficiency. The results further indicate that the optimal amount of icebreaking assistance and optimal vessel speed differs for different vessels, highlighting the motivation for holistic design optimization. The applied adaptation of the ABC algorithm proved to be well suited and efficient for the multi-objective optimization problem considered.


Author(s):  
Dan Zhang ◽  
Bin Wei

Differential evolution (DE) and Pareto front theory are used to optimize stiffness in three directions and workspace of a 3UPU manipulator. Stiffness of the mechanism in each direction is analyzed, and it comes to the fact when stiffness in x and y directions increase, stiffness in z direction will decrease and therefore, the sum of stiffness in x and y and stiffness in z are optimized simultaneously by applying DE, but those two objectives are not in the same scale, a normalization of objectives is therefore considered. Furthermore, workspace volume of the mechanism is analyzed and optimized by using DE. By comparing landscapes of stiffness and workspace volume, one finds stiffness in z has same trend with workspace volume whereas stiffness in x and y and workspace volume conflicts. By employing Pareto front theory and DE, the sum of stiffness in x and y and workspace volume are optimized simultaneously.


Sign in / Sign up

Export Citation Format

Share Document