Multi-Objective Optimization of the Impingement-Film Cooling Structure of a Gas Turbine Endwall Using Conjugate Heat Transfer Simulations

Author(s):  
Zhongran Chi ◽  
Haiqing Liu ◽  
Shusheng Zang

This paper discusses the approach of cooling design optimization of a high-pressure turbine (HPT) endwall with applied 3D conjugate heat transfer (CHT) computational fluid dynamics (CFD). This study involved the optimization of the spacing of impingement jet array and the exit width of shaped holes, which are different for each cooling cavity. The optimization objectives were to reduce the wall-temperature level and to increase the aerodynamic performance. The optimization methodology consisted of an in-house parametric design and CFD mesh generation tool, a CHT CFD solver, a database of CFD results, a metamodel, and an algorithm for multi-objective optimization. The CFD tool was validated against experimental data of an endwall at CHT conditions. The metamodel, which could efficiently estimate the optimization objectives of new individuals without CFD runs, was developed and coupled with nondominated sorting genetic algorithm II (NSGA II) to accelerate the optimization process. Through the optimization search, the Pareto front of the problem was found in each iteration. The accuracy of metamodel with more iterations was improved by enriching database. But optimal designs found by the last iteration are almost identical with those of the first iteration. Through analyzing extra CFD results, it was demonstrated that the design variables in the Pareto front successfully reached the optimal values. The optimal pitches of impingement arrays could be decided accommodating the local thermal load while avoiding jet lift-off of film coolant. It was also suggested that cylindrical film holes near throat should be beneficial to both aerodynamic and cooling performances.

Author(s):  
Zhongran Chi ◽  
Haiqing Liu ◽  
Shusheng Zang

This paper discusses the approach of cooling design optimization of a HPT endwall with 3D Conjugate Heat Transfer (CHT) CFD applied. This study involved the optimization of the spacing of impingement jet array and the exit width of shaped holes, which were different for each cooling cavity. The optimization objectives were to reduce the wall temperature level and also to increase the aerodynamic performance of the gas turbine. The optimization methodology consisted of an in-house parametric design & CFD mesh generation tool, a CHT CFD solver, a database of wall temperature distributions, a metamodel, and a genetic algorithm (GA) for evolutionary multi-objective optimization. The CFD tool was validated against experimental data of an endwall at CHT conditions. The metamodel, which could efficiently predict the aerodynamic loss and the wall temperature distribution of a new individual based on the database, was developed and coupled with Non-dominated Sorting Genetic Algorithm II (NSGA-II) to accelerate the optimization process. Through optimization search, the Pareto front of the problem was found costing only tens of CFD runs. By comparing with additional CFD results, it was demonstrated that the design variables in the Pareto front successfully reached the optimal values. The optimal spacing of each impingement array was decided accommodating the local thermal load while avoiding jet lift-off of film coolant. It was also suggested that using cylindrical film holes near throat could benefit both aerodynamics and cooling.


2014 ◽  
Vol 945-949 ◽  
pp. 2241-2247
Author(s):  
De Gao Zhao ◽  
Qiang Li

This paper deals with application of Non-dominated Sorting Genetic Algorithm with elitism (NSGA-II) to solve multi-objective optimization problems of designing a vehicle-borne radar antenna pedestal. Five technical improvements are proposed due to the disadvantages of NSGA-II. They are as follow: (1) presenting a new method to calculate the fitness of individuals in population; (2) renewing the definition of crowding distance; (3) introducing a threshold for choosing elitist; (4) reducing some redundant sorting process; (5) developing a self-adaptive arithmetic cross and mutation probability. The modified algorithm can lead to better population diversity than the original NSGA-II. Simulation results prove rationality and validity of the modified NSGA-II. A uniformly distributed Pareto front can be obtained by using the modified NSGA-II. Finally, a multi-objective problem of designing a vehicle-borne radar antenna pedestal is settled with the modified algorithm.


2016 ◽  
Vol 23 (5) ◽  
pp. 782-793 ◽  
Author(s):  
Mansour Ataei ◽  
Ehsan Asadi ◽  
Avesta Goodarzi ◽  
Amir Khajepour ◽  
Mir Behrad Khamesee

This paper reports work on the optimization and performance evaluation of a hybrid electromagnetic suspension system equipped with a hybrid electromagnetic damper. The hybrid damper is configured to operate with hydraulic and electromagnetic components. The hydraulic component produces a large fail-safe baseline damping force, while the electromagnetic component adds energy regeneration and adaptability to the suspension. For analyzing the system, the electromagnetic component was modeled and integrated into a 2DOF quarter-car model. Three criteria were considered for evaluating the performance of the suspension system: ride comfort, road holding and regenerated power. Using the genetic algorithm multi-objective optimization (NSGA-II), the suspension design was optimized to improve the performance of the vehicle with respect to the selected criteria. The multi-objective optimization method provided a set of solutions called Pareto front in which all solutions are equally good and the selection of each one depends on conditions and needs. Among the given solutions in the Pareto front, a small number of cases, with different design purposes, were selected. The performances of the selected designs were compared with two reference systems: a conventional and a nonoptimized hybrid suspension system. The results show that the ride comfort and road holding qualities of the optimized hybrid system are improved, and the regenerated power is considerably increased.


Author(s):  
Mahmood Silieti ◽  
Eduardo Divo ◽  
Alain J. Kassab

This paper documents a computational investigation of the film-cooling effectiveness of a 3-D gas turbine endwall with one cylindrical cooling hole. The simulations were performed for an adiabatic and conjugate heat transfer models. Turbulence closure was investigated using five different turbulence models; the standard k-ε model, the RNG k-ε model, the realizable k-ε model, the standard k-ε model, as well as the SST k-ω model. Results were obtained for a blowing ratio of 2.0, and a coolant-to-mainflow temperature ratio of 0.54. The simulations used a dense, high quality, O-type, hexahedral grid. The computed flow/temperature fields are presented, in addition to local, two-dimensional distribution of film cooling effectiveness for the adiabatic and conjugate cases. Results are compared to experimental data in terms of centerline film cooling effectiveness downstream cooling-hole, the predictions with realizable k-ε turbulence model exhibited the best agreement especially in the region for (x/D ≤ 6). All turbulence models predicted the jet lift-off. Also, the results show the effect of the conjugate heat transfer on the temperature (effectiveness) field in the film-cooling hole region and, thus, the additional heating up of the cooling jet itself.


2021 ◽  
pp. 1-12
Author(s):  
Cis De Maesschalck ◽  
Valeria Andreoli ◽  
Guillermo Paniagua ◽  
Tyler Gillen ◽  
Brett Barker

Abstract The optimization of the turbine tip geometry remains vital to create more efficient and durable engines. Balancing the aerodynamic and thermal aspects, while maintaining mechanical integrity is key to reshape one of the most vulnerable parts of the entire engine. The increasing turbine gas temperatures, combined with the aerodynamically penalizing overtip leakage vortex, makes the design of the tip a truly multidisciplinary challenge. While many earlier efforts focused on uncooled geometries, or studied the aerothermal impact with a fixed cooling configuration, the current paper presents the outcome of a multi-objective optimization where both the squealer rim geometry and cooling injection pattern were allowed to vary simultaneously. This study seeks a further synergistic aerothermal benefit through combining a quasi-fully arbitrary cooling arrangement, with mutating squealer rim structures. Specifically, the current manuscript presents the results of over 330 cooled and uncooled squealer tip geometries. The turbine tip was automatically altered using a novel parametrization strategy, varying both the squealer rim structures as well as the size and location of the cooling holes. The aerodynamic and thermal characteristics of every design were evaluated through 3D CFD, adopting high-density hexahedral grids. A multi-objective differential evolution algorithm was used to obtain a Pareto front which maximizes the aerodynamic efficiency, while minimizing the overtip thermal loads. Eventually, a detailed investigation and robustness study was performed on a set of prime squealer geometries, to further investigate the aerodynamic flow topology, and the effect of various cooling injection schemes on the heat transfer patterns.


Volume 4 ◽  
2004 ◽  
Author(s):  
Mahmood Silieti ◽  
Eduardo Divo ◽  
Alain J. Kassab

We investigate the numerical prediction of film cooling effectiveness of a two-dimensional gas turbine endwall for the cases of conjugate and adiabatic heat transfer models. Further, the consequence of various turbulence models employed in the computation are investigated by considering various turbulence models: ‘RNG’ k-ε model, Realizable k-ε model, Standard k-ω model, ‘SST’ k-ω model, and ‘RSM’ model. The computed flow field and surface temperature profiles along with the film effectiveness for one and two cooling slots at different injection angles and blowing ratio of one are presented. The results show the strong effect of the conjugate heat transfer on the film effectiveness compared to the adiabatic and analytically derived formulae and show that turbulence model used significantly affects the film effectiveness prediction when separation occurs in the film hole and some level of jet lift-off is present.


2012 ◽  
Vol 2012 ◽  
pp. 1-11 ◽  
Author(s):  
Yufang Qin ◽  
Junzhong Ji ◽  
Chunnian Liu

Multiobjective optimization problem (MOP) is an important and challenging topic in the fields of industrial design and scientific research. Multi-objective evolutionary algorithm (MOEA) has proved to be one of the most efficient algorithms solving the multi-objective optimization. In this paper, we propose an entropy-based multi-objective evolutionary algorithm with an enhanced elite mechanism (E-MOEA), which improves the convergence and diversity of solution set in MOPs effectively. In this algorithm, an enhanced elite mechanism is applied to guide the direction of the evolution of the population. Specifically, it accelerates the population to approach the true Pareto front at the early stage of the evolution process. A strategy based on entropy is used to maintain the diversity of population when the population is near to the Pareto front. The proposed algorithm is executed on widely used test problems, and the simulated results show that the algorithm has better or comparative performances in convergence and diversity of solutions compared with two state-of-the-art evolutionary algorithms: NSGA-II, SPEA2 and the MOSADE.


Water ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1421
Author(s):  
Jisi Fu ◽  
Ping-An Zhong ◽  
Bin Xu ◽  
Feilin Zhu ◽  
Juan Chen ◽  
...  

Transboundary water resources allocation is an effective measure to resolve water-related conflicts. Aiming at the problem of water conflicts, we constructed water resources allocation models based on game theory and multi-objective optimization, and revealed the differences between the two models. We compare the Pareto front solved by the AR-MOEA method and the NSGA-II method, and analyzed the difference between the Nash–Harsanyi Leader–Follower game model and the multi-objective optimization model. The Huaihe River basin was selected as a case study. The results show that: (1) The AR-MOEA method is better than the NSGA-II method in terms of the diversity metric (Δ); (2) the solution of the asymmetric Nash–Harsanyi Leader–Follower game model is a non-dominated solution, and the asymmetric game model can obtain the same water resources allocation scheme of the multi-objective optimal allocation model under a specific preference structure; (3) after the multi-objective optimization model obtains the Pareto front, it still needs to construct the preference information of the Pareto front for a second time to make the optimal solution of a multi-objective decision, while the game model can directly obtain the water resources allocation scheme at one time by participating in the negotiation. The results expand the solution method of water resources allocation models and provide support for rational water resources allocation.


Sign in / Sign up

Export Citation Format

Share Document