Model-oriented review and multi-body simulation of the ossicular chain of the human middle ear

2012 ◽  
Vol 34 (9) ◽  
pp. 1339-1355 ◽  
Author(s):  
G. Volandri ◽  
F. Di Puccio ◽  
P. Forte ◽  
S. Manetti
Author(s):  
Gaia Volandri ◽  
Francesca Di Puccio ◽  
Paola Forte

The human middle ear includes the tympanic membrane and the ossicular chain. The finite element method is capable of representing the complex geometry and the material orthotropy of the tympanic membrane. On the contrary, the ossicles can be considered as rigid bodies and a multi-body approach can be adopted. In the present study a multi-body model of the ossicular chain and other structures (joints, ligaments and muscle tendons) of the middle ear was developed and combined with a finite element model of the tympanic membrane through a feedback control strategy. An optimization procedure was used to calibrate unspecified or uncertain parameters with the aim of reproducing ascertained experimental literature data. The sensitivity of the calibrated models to both tympanic membrane and ossicular chain parameters was investigated. Material, geometrical and inertial parameters were considered, in particular those whose values were most widespread in the literature.


Materials ◽  
2013 ◽  
Vol 6 (10) ◽  
pp. 4675-4688 ◽  
Author(s):  
Frank Böhnke ◽  
Theodor Bretan ◽  
Stefan Lehner ◽  
Tobias Strenger

Human middle ear ensures sound transfer due its ossicular chain, any disorder or abnormalities in this structure leads to a conductive hearing loss (CHL). Tinnitus is a health problem, associated with hearing loss, it remains a devastating symptom. In this work, we present an electrical model of the human middle ear including middle ear cavities (ZMEC), tympanic membrane with ossicular chain (ZTOC), and stapes complex with cochlea load (ZSC). This model is modified to represent more closely the related pathologies affecting the middle ear. We will focus our analysis on ossicular chain disorder by studying the effect of increasing ossicular chain (OC) stiffness and mass in both normal middle ear structures and disconnected stapes superstructure. The change in middle ear structures and impedance allows us to simulate ossicular chain disorder effects and analyze their impact on sound transmission. This analysis allowed us to know if this disorder can eventually cause tinnitus. The results showed that the effect of ossicular chain anomalies can be studied based on frequency response of middle ear transfer function by applying only the principle of mass and stiffness, and demonstrate compared to clinical results the efficiency and simplicity of using the electrical model.


1998 ◽  
Vol 23 (3) ◽  
pp. 265-265 ◽  
Author(s):  
Hutton ◽  
Birchall ◽  
French ◽  
Kubba ◽  
Severn ◽  
...  

Author(s):  
E A Guneri ◽  
A Cakir Cetin

Abstract Objective To compare the results of endoscopic and microscopic ossicular chain reconstruction surgery. Methods Patients undergoing ossicular chain reconstruction surgery via an endoscopic (n = 31) or microscopic (n = 34) technique were analysed for age, gender, Middle Ear Risk Index, ossicular chain defect, incision type, ossicular chain reconstruction surgery material, mean air conduction threshold, air–bone gap, air–bone gap gain, word recognition score, mean operation duration and mean post-operative follow up. Results Post-operative air conduction, air–bone gap and word recognition score improved significantly in both groups (within-subject p < 0.001 for air conduction and air–bone gap, and 0.026 for word recognition score); differences between groups were not significant (between-subject p = 0.192 for air conduction, 0.102 for air–bone gap, and 0.709 for word recognition score). Other parameters were similar between groups, except for incision type. However, endoscopic ossicular chain reconstruction surgery was associated with a significantly shorter operation duration (p < 0.001). Conclusion Endoscopic ossicular chain reconstruction surgery can achieve comparable surgical and audiological outcomes to those of microscopic ossicular chain reconstruction surgery in a shorter time.


Author(s):  
Arwa Kurabi ◽  
Kwang Pak ◽  
Adam S. DeConde ◽  
Allen F. Ryan ◽  
Carol H. Yan

AbstractViral infections have already been implicated with otitis media and sudden sensorineural hearing loss. However, the pathophysiology of COVID-19 as it relates to otologic disorders is not well-defined. With the spread of SARS-CoV-2, it is important to evaluate its colonization of middle ear mucosa. Middle ear and nasal tissue samples for quantitative RT-PCR and histologic evaluations were obtained from post-mortem COVID-19 patients and non-diseased control patients. Here we present evidence that SARS-CoV-2 colonizes the middle ear epithelium and co-localizes with the primary viral receptor, angiotensin-converting enzyme 2 (ACE2). Both middle ear and nasal epithelial cells show relatively high expression of ACE2, required for SARS-CoV-2 entry. The epithelial cell adhesion molecule (EpCAM) was use as a biomarker of epithelia. Furthermore, we found that the viral load in the middle ear is lower than that present in the nasal cavity.


2013 ◽  
Vol 81 (3) ◽  
pp. 645-652 ◽  
Author(s):  
Kirsty R. Short ◽  
Patrick C. Reading ◽  
Lorena E. Brown ◽  
John Pedersen ◽  
Brad Gilbertson ◽  
...  

ABSTRACTInfluenza A virus (IAV) predisposes individuals to secondary infections with the bacteriumStreptococcus pneumoniae(the pneumococcus). Infections may manifest as pneumonia, sepsis, meningitis, or otitis media (OM). It remains controversial as to whether secondary pneumococcal disease is due to the induction of an aberrant immune response or IAV-induced immunosuppression. Moreover, as the majority of studies have been performed in the context of pneumococcal pneumonia, it remains unclear how far these findings can be extrapolated to other pneumococcal disease phenotypes such as OM. Here, we used an infant mouse model, human middle ear epithelial cells, and a series of reverse-engineered influenza viruses to investigate how IAV promotes bacterial OM. Our data suggest that the influenza virus HA facilitates disease by inducing a proinflammatory response in the middle ear cavity in a replication-dependent manner. Importantly, our findings suggest that it is the inflammatory response to IAV infection that mediates pneumococcal replication. This study thus provides the first evidence that inflammation drives pneumococcal replication in the middle ear cavity, which may have important implications for the treatment of pneumococcal OM.


Author(s):  
R. Rusinek ◽  
M. Szymanski ◽  
J. Warminski

The analysis of the shape memory prosthesis (SMP) of the middle ear is presented in this paper. The shape memory prosthesis permits the adjustment of its length to individual patient needs, but sometimes the prosthesis cannot be properly fixed to the stapes. In this case, the impact between the prosthesis and stapes is important. Therefore, the reconstructed middle ear is modeled as a two degree-of-freedom system with a nonlinear shape memory element and soft impact to represent its behavior when the prosthesis is not properly placed or fixed. The properties of the shape memory prosthesis, in the form of a helical spring, are represented by a polynomial function. The system exhibits advisable periodic and undesirable aperiodic and irregular behavior depending on the excitation amplitude, the frequency, and the prosthesis length. The prosthesis length can change, resulting in a modification of the distance between the prosthesis and the stapes. The results of this study provide an answer in terms of how the prosthesis length, which produces the ossicular chain tension, influences the system dynamics and its implication in medical practice.


1995 ◽  
Vol 105 (2) ◽  
pp. 188-191 ◽  
Author(s):  
Masayuki Furukawa ◽  
Nobuo Kubo ◽  
Toshio Yamashita

Sign in / Sign up

Export Citation Format

Share Document