Oocyte quality reflected by follicular fluid analysis in poly cystic ovary syndrome (PCOS): A hypothesis based on intermediates of energy metabolism

2012 ◽  
Vol 78 (4) ◽  
pp. 475-478 ◽  
Author(s):  
Bikas K. Arya ◽  
Ahtesham Ul Haq ◽  
Koel Chaudhury
2014 ◽  
Vol 99 (11) ◽  
pp. E2269-E2276 ◽  
Author(s):  
Zhihong Niu ◽  
Nan Lin ◽  
Ruihuan Gu ◽  
Yijuan Sun ◽  
Yun Feng

Context: Both polycystic ovary syndrome (PCOS) and obesity are associated with specific reproductive health complications, including lower oocyte quality and clinical pregnancy rates in assisted conception cycles, which may be a result of metabolism-induced changes in the oocyte through the microenvironment of follicular fluid. Free fatty acids (FFAs) are important biomedical indicators of abnormal lipid metabolism and have pronounced effects on cells, leading to changes in metabolism, cell growth, and differentiation Objective: Our objective was to determine the effect of FFA metabolism in plasma and follicular fluid on oocyte quality in the women with PCOS undergoing in vitro fertilization. Design and Setting: Ninety-three women undergoing in vitro fertilization treatment, including 55 with PCOS and 38 age-matched controls, were recruited. PCOS patients were divided into obese and nonobese subgroups on the basis of their body mass index. Main Outcome Measures: Embryo quality was morphologically assessed, and serum sex hormone and insulin levels were measured. FFAs in plasma and follicular fluid were measured using gas chromatography-mass spectrometry. Results: PCOS was found to be associated with significantly higher LH/FSH, total T, free androgen index (FAI), and lower SHBG levels, independent of obesity(P < .05). Obese women with PCOS had a significantly higher total T level, FAI, fasting insulin, insulin resistance index as determined by homeostasis model assessment for insulin resistance, and lower SHBG levels than the nonobese women with PCOS (P < .05). The embryo fragmentation score was significantly positively correlated with the oleic acid concentration in all PCOS patients (r = 0.22, P = .04, for nonobese patients and r = 0.25, P = .03, for obese patients). Conclusions: Our findings clearly demonstrated that PCOS is associated with significantly higher FAI and insulin resistance levels and decreased plasma SHBG levels, independent of body mass index. Obese PCOS patients had higher palmitoleic acid and oleic acid levels in both the plasma and follicular fluid than did the control subject and nonobese PCOS patients. Our results indicated that developmental competence is associated with oleic and stearic acid concentrations, which may contribute to the poor pregnancy outcomes in patients with PCOS.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Li Yu ◽  
Miao Liu ◽  
Zhenxin Wang ◽  
Te Liu ◽  
Suying Liu ◽  
...  

Abstract Background Polycystic ovary syndrome (PCOS) is an endocrine and metabolic disorder with various manifestations and complex etiology. Follicular fluid (FF) serves as the complex microenvironment for follicular development. However, the correlation between the concentration of steroid in FF and the pathogenesis of PCOS is still unclear. Methods Twenty steroid levels in FF from ten patients with PCOS and ten women with male-factor infertility undergoing in vitro fertilization were tested by liquid chromatography-tandem mass spectrometry (LC-MS/MS) in order to explore their possibly correlation with PCOS. Meanwhile, the mRNA levels of core enzymes in steroid synthesis pathway from exosomes of FF were also detected by qPCR. Results The estriol (p < 0.01), estradiol (p < 0.05) and prenenolone (p < 0.01) levels in FF of PCOS group were significantly increased, compared to the normal group, and the progesterone levels (p < 0.05) were decreased in PCOS group. Increased mRNA levels of CYP11A, CYP19A and HSD17B2 of exosomes were accompanied by the hormonal changes in FF. Correlation analysis showed that mRNA levels of CYP11A and HSD17B2 were negatively correlated with percent of top-quality embryos and rate of embryos develop to blastocyst. Conclusion Our results suggest that increased levels of estrogen and pregnenolone in follicular fluid may affect follicle development in PCOS patients, and the mechanism is partially related to HSD17B1, CYP19A1 and CYP11A1 expression change in FF exosomes.


2016 ◽  
Vol 32 (6) ◽  
pp. 460-463 ◽  
Author(s):  
Natı Musalı ◽  
Batuhan Özmen ◽  
Yavuz Emre Şükür ◽  
Berrin İmge Ergüder ◽  
Cem Somer Atabekoğlu ◽  
...  

Author(s):  
Özgür BİGE ◽  
Bülent GÜLEKLİ ◽  
Ahmet DEMİR ◽  
Funda GÖDE ◽  
Semra KOÇTÜRK ◽  
...  

2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Fang Hou ◽  
Jie Li ◽  
Jie Peng ◽  
Zhenghua Teng ◽  
Jun Feng ◽  
...  

Abstract Background TMPO-AS1 is a recently characterized oncogenic lncRNA in ovarian cancer. Its role in other ovary diseases is unknown. This study explored its role in polycystic ovary syndrome (PCOS). Methods Follicular fluid was extracted from both PCOS patients and controls. The levels of TMPO-AS1 and mature and premature miR-335-5p were analyzed by RT-qPCR. The role of TMPO-AS1 in regulating miR-355-5p maturation in granulosa-like tumor (KGN) cells was analyzed by overexpression experiments. The interaction between TMPO-AS1 and premature miR-335-5p was analyzed by RNA pull-down assay. The subcellular location of TMPO-AS1 in KGN cells was analyzed by nuclear fractionation assay. The role of TMPO-AS1 and miR-335-5p in KGN cell proliferation was analyzed by BrdU assay. Results TMPO-AS1 was increased in PCOS, while mature miR-355-5p was decreased in PCOS. TMPO-AS1 overexpression decreased mature miR-355-5p level but increased premature miR-355-5p. TMPO-AS1 was localized in both nucleus and cytoplasm. TMPO-AS1 directly interacted with premature miR-355-5p in KGN cells. TMPO-AS1 increased KGN cell proliferation while miR-355-5p decreased cell proliferation. The co-transfection assay showed that TMPO-AS1 reduced the suppressive effects of miR-355-5p on cell proliferation. Conclusions TMPO-AS1 might suppress miR-335-5p maturation to participate in PCOS.


Sign in / Sign up

Export Citation Format

Share Document