Design of FinFET-based Energy Efficient Pass-Transistor Adiabatic Logic for ultra-low power applications

2019 ◽  
Vol 92 ◽  
pp. 104601 ◽  
Author(s):  
B.P. Bhuvana ◽  
V.S. Kanchana Bhaaskaran
VLSI Design ◽  
2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
A. Kishore Kumar ◽  
D. Somasundareswari ◽  
V. Duraisamy ◽  
T. Shunbaga Pradeepa

Asynchronous adiabatic logic (AAL) is a novel lowpower design technique which combines the energy saving benefits of asynchronous systems with adiabatic benefits. In this paper, energy efficient full adder using double pass transistor with asynchronous adiabatic logic (DPTAAL) is used to design a low power multiplier. Asynchronous adiabatic circuits are very low power circuits to preserve energy for reuse, which reduces the amount of energy drawn directly from the power supply. In this work, an 8×8 multiplier using DPTAAL is designed and simulated, which exhibits low power and reliable logical operations. To improve the circuit performance at reduced voltage level, double pass transistor logic (DPL) is introduced. The power results of the proposed multiplier design are compared with the conventional CMOS implementation. Simulation results show significant improvement in power for clock rates ranging from 100 MHz to 300 MHz.


2017 ◽  
Vol 13 (3) ◽  
pp. 472-481 ◽  
Author(s):  
Manash Chanda ◽  
Tanushree Ganguli ◽  
Sandipta Mal ◽  
Anindita Podder ◽  
Chandan Kumar Sarkar

Micromachines ◽  
2020 ◽  
Vol 11 (2) ◽  
pp. 223 ◽  
Author(s):  
Yannan Zhang ◽  
Ke Han ◽  
and Jiawei Li

Ultra-low power and high-performance logical devices have been the driving force for the continued scaling of complementary metal oxide semiconductor field effect transistors which greatly enable electronic devices such as smart phones to be energy-efficient and portable. In the pursuit of smaller and faster devices, researchers and scientists have worked out a number of ways to further lower the leaking current of MOSFETs (Metal oxide semiconductor field effect transistor). Nanowire structure is now regarded as a promising candidate of future generation of logical devices due to its ultra-low off-state leaking current compares to FinFET. However, the potential of nanowire in terms of off-state current has not been fully discovered. In this article, a novel Core–Insulator Gate-All-Around (CIGAA) nanowire has been proposed, investigated, and simulated comprehensively and systematically based on 3D numerical simulation. Comparisons are carried out between GAA and CIGAA. The new CIGAA structure exhibits low off-state current compares to that of GAA, making it a suitable candidate of future low-power and energy-efficient devices.


Sign in / Sign up

Export Citation Format

Share Document