Influence of solvent exchange time on mixed matrix membrane separation performance for CO2/N2 and a kinetic sorption study

2015 ◽  
Vol 476 ◽  
pp. 590-601 ◽  
Author(s):  
Z.A. Jawad ◽  
A.L. Ahmad ◽  
S.C. Low ◽  
T.L. Chew ◽  
S.H.S. Zein
2017 ◽  
Vol 13 (1) ◽  
Author(s):  
A. Salimi ◽  
O. Bakhtiari ◽  
M. K. Moghaddam ◽  
T. Mohammadi

Gas separation using membrane processes are potentially economical in industrial scale. Two parameters are used for analyzing the membrane separation performance: permeability and selectivity. There is a trade off between them for polymeric membranes that makes it impossible to increase both of them simultaneously. Molecular sieve membranes, on the other hand, exhibit high permeability and selectivity but are brittle in nature and costly. A new generation of membranes has made many hopes to use simultaneously both desired properties of polymers and molecular sieves in a structure called “mixed matrix membrane (MMM)” where a molecular sieve is incorporated within a polymer matrix. As other branches of science and engineering, having a tool to predict MMMs performance seems to be essential to save time and money for research and industrial applications. Many mathematical models were developed to predict MMMs performance based on separation performance of fillers and polymers. Maxwell model is the simplest model developed for prediction of electrical properties of composite materials but it is not perfect for all cases. Some modifications were performed on Maxwell model and some other modified models were developed for better prediction of MMMs separation performance. In this research, modified Maxwell and Bruggeman models were employed to predict gas separation performance of some MMMs in the current work and the results were acceptable for all non–ideal cases which might be occurred in MMMs structure.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Lili Jiang ◽  
Yimin Meng ◽  
Su Xu ◽  
Haitao Yu ◽  
Xingang Hou

As an economical, environmentally friendly, and highly efficient separation technology, membrane separation is a popular research topic in the field of separation. Organic polymer materials have attracted considerable attention in membrane separation because of their controllable preparation processes, simple modification method, and high toughness. Taking polysulfone (PSF) as the substrate of gas separation membrane, we prepared the mixed matrix membrane jointly by using the solution casting method and by adding graphene oxide (GO) and carbon nanotubes (CNTs). On this basis, the permeability of the membrane for CO2 and N2 and the permeability coefficient of the mixed gas were studied. With the addition of CNTs and GO, the permeability of gas was significantly improved. At 0.2 MPa, permeability of CO2 increased from 553 Barrer to 975 Barrer, and permeability of N2 increased from 536 Barrer to 745 Barrer. The max ideal separation coefficient of CO2 and N2 is 1.94 at 0.1 MPa. Increasing of the content of carbon nanotubes can significantly improve the permeability coefficient of CO2, while the change of inlet side pressure has a great impact on the permeability coefficient of N2. At 0.1 MPa, when the ratio of CNTs to GO was 5 : 1, the ideal permeability coefficient of CO2/N2 was 1.94, whereas the ideal permeability coefficient of PSF membrane was 1.46. The above results of PSF/GO/CNT mixed matrix membrane lay a theoretical foundation for industrial application.


Membranes ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 194
Author(s):  
Xiuxiu Ren ◽  
Masakoto Kanezashi ◽  
Meng Guo ◽  
Rong Xu ◽  
Jing Zhong ◽  
...  

A new polyhedral oligomeric silsesquioxane (POSS) designed with eight –(CH2)3–NH–(CH2)2–NH2 groups (PNEN) at its apexes was used as nanocomposite uploading into 1,2-bis(triethoxysilyl)ethane (BTESE)-derived organosilica to prepare mixed matrix membranes (MMMs) for gas separation. The mixtures of BTESE-PNEN were uniform with particle size of around 31 nm, which is larger than that of pure BTESE sols. The characterization of thermogravimetric (TG) and gas permeance indicates good thermal stability. A similar amine-contained material of 3-aminopropyltriethoxysilane (APTES) was doped into BTESE to prepare hybrid membranes through a copolymerized strategy as comparison. The pore size of the BTESE-PNEN membrane evaluated through a modified gas-translation model was larger than that of the BTESE-APTES hybrid membrane at the same concentration of additions, which resulted in different separation performance. The low values of Ep(CO2)-Ep(N2) and Ep(N2) for the BTESE-PNEN membrane at a low concentration of PNEN were close to those of copolymerized BTESE-APTES-related hybrid membranes, which illustrates a potential CO2 separation performance by using a mixed matrix membrane strategy with multiple amine POSS as particles.


REAKTOR ◽  
2008 ◽  
Vol 12 (2) ◽  
pp. 68 ◽  
Author(s):  
Tutuk Djoko Kusworo ◽  
Ahmad Fauzi Ismail ◽  
Azeman Mustafa ◽  
Kang Li

The permeation rates of O2, N2, CO2 and CH4 has been studied for polyimide-polyethersulfone (PI/PES) blends-zeolite mixed matrix membranes synthesized in our laboratory. The study investigated the effect of zeolite loading and different zeolite type on the gas separation performance of these mixed matrix membranes. Frequency shifts and absorption intensity changes in the FTIR spectra of the PI/PES blends as compared with those of the pure polymers indicate that there is a mixing of polymer blends at the molecular level. Differential scanning calorimetry measurements of pure and PI/PES blends membranes have showed one unique glass transition temperature that supports the miscible character of the PI/PES mixture. The PI/PES-zeolite 4A mixed matrix membrane with 25 wt % zeolite loading produced the highest O2/N2 and CO2/CH4 selectivity of around 7.45 and 46.05, respectively.


2018 ◽  
Vol 6 (7) ◽  
pp. 3151-3161 ◽  
Author(s):  
Yongqiang Gao ◽  
Zhihua Qiao ◽  
Song Zhao ◽  
Zhi Wang ◽  
Jixiao Wang

PEI-g-ZIF-8 presents appropriate porous structure, amino functionalized surface and improved interfacial compatibility with the polymer matrix to endow the MMMs with excellent gas separation performance.


2020 ◽  
Vol 307 ◽  
pp. 258-263
Author(s):  
Nabilah Fazil ◽  
Hilmi Mukhtar ◽  
Dzeti Farhah Mohshim ◽  
Rizwan Nasir

Mixed matrix membrane (MMM), a developing research area, is a membrane formed by incorporating fillers in the polymeric membrane to enhance gas separation performance. In this study, MMMs comprised of blend rubbery block copolymers of polyether block amide (Pebax-1657) with a glassy polyethersulfone (PES) polymer and multi-walled carbon nanotubes (MWCNTs) were synthesized by dry phase inversion method and explored further by gas permeability test. Pebax-1657/PES/MWCNTs membrane resulted in an increased permeability as well as CO2/CH4 selectivity. The Pebax-1657/PES polymer blend MMM with 10wt% of MWCNTs has shown the most superior performance of CO2 permeability, CH4 permeability and CO2/CH4 selectivity in comparison with the pure Pebax-1657 resulted in 66.3% and 11.6% difference respectively.


2019 ◽  
Vol 7 (25) ◽  
pp. 15164-15172 ◽  
Author(s):  
Nicholaus Prasetya ◽  
Bradley P. Ladewig

Tailoring the content of the light-responsive ligand in UiO-66 topology through a mixed-linker approach for CO2 adsorbent and mixed matrix membrane application.


Polymers ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 414 ◽  
Author(s):  
Caibin Cai ◽  
Xiaotao Fan ◽  
Xiaolong Han ◽  
Jiding Li ◽  
Harsh Vardhan

In this paper, copper benzene-1,3,5-tricarboxylate (CuBTC) was incorporated into polyethylenglyol (PEG) to prepare a mixed matrix membrane (MMM) for pervaporation desulfurization. The characterization results showed that the prepared CuBTC particles had an ideal octahedral shape and micropores. The Cu2+ in CuBTC interacts with thiophene via π-complexation, thus enhancing the separation performance of the hybrid membranes. The effect of CuBTC content and the operating condition on the pervaporation performance of the MMMs was investigated. An optimal pervaporation separation performance was acquired with a permeation flux of 2.21 kg/(m2·h) and an enrichment factor of 8.79, which were increased by 100% and 39% compared with the pristine PEG membrane. Moreover, the CuBTC-filled PEG membrane showed a good stability in the long-term desulfurization under a high operating temperature of 75 °C for five days.


Sign in / Sign up

Export Citation Format

Share Document