Redox signal-mediated TRPM2 promotes Ang II-induced adipocyte insulin resistance via Ca2+-dependent CaMKII/JNK cascade

Metabolism ◽  
2018 ◽  
Vol 85 ◽  
pp. 313-324 ◽  
Author(s):  
Min Gao ◽  
Yu Du ◽  
Jing-Wen Xie ◽  
Jing Xue ◽  
Yi-Ting Wang ◽  
...  
1999 ◽  
Vol 277 (5) ◽  
pp. E920-E926 ◽  
Author(s):  
Joyce M. Richey ◽  
Marilyn Ader ◽  
Donna Moore ◽  
Richard N. Bergman

We set out to examine whether angiotensin-driven hypertension can alter insulin action and whether these changes are reflected as changes in interstitial insulin (the signal to which insulin-sensitive cells respond to increase glucose uptake). To this end, we measured hemodynamic parameters, glucose turnover, and insulin dynamics in both plasma and interstitial fluid (lymph) during hyperinsulinemic euglycemic clamps in anesthetized dogs, with or without simultaneous infusions of angiotensin II (ANG II). Hyperinsulinemia per se failed to alter mean arterial pressure, heart rate, or femoral blood flow. ANG II infusion resulted in increased mean arterial pressure (68 ± 16 to 94 ± 14 mmHg, P < 0.001) with a compensatory decrease in heart rate (110 ± 7 vs. 86 ± 4 mmHg, P < 0.05). Peripheral resistance was significantly increased by ANG II from 0.434 to 0.507 mmHg ⋅ ml−1⋅ min ( P < 0.05). ANG II infusion increased femoral artery blood flow (176 ± 4 to 187 ± 5 ml/min, P < 0.05) and resulted in additional increases in both plasma and lymph insulin (93 ± 20 to 122 ± 13 μU/ml and 30 ± 4 to 45 ± 8 μU/ml, P < 0.05). However, glucose uptake was not significantly altered and actually had a tendency to be lower (5.9 ± 1.2 vs. 5.4 ± 0.7 mg ⋅ kg−1⋅ min−1, P > 0.10). Mimicking of the ANG II-induced hyperinsulinemia resulted in an additional increase in glucose uptake. These data imply that ANG II induces insulin resistance by an effect independent of a reduction in interstitial insulin.


2009 ◽  
Vol 201 (2) ◽  
pp. 185-197 ◽  
Author(s):  
Marina C Muñoz ◽  
Jorge F Giani ◽  
Marcos A Mayer ◽  
Jorge E Toblli ◽  
Daniel Turyn ◽  
...  

The IκB kinase-β (IKK-β)/nuclear factor-κB signaling pathway has been suggested to link inflammation with obesity and insulin resistance. In addition, angiotensin (Ang) II is able to induce insulin resistance and an inflammatory state through Ang II receptor type 1 (AT1R). Accordingly, we examined whether inhibition of AT1R with irbesartan (IRB) can protect against the development of insulin resistance in obese Zucker rats (OZRs). IRB-treatment improved the insulin-stimulated insulin receptor (IR) phosphorylation at tyrosine (Tyr) residues 1158, 1162, 1163 (involved in activation of the IR kinase) and at Tyr972 (involved in substrate recognition). AT1R blockade also originated a dramatic increase in the phosphorylation of Akt and glycogen synthase kinase-3β. This was accompanied by a decrease in phosphorylation of IR on serine (Ser) 994, a residue that seems to be implicated in the regulation of IR kinase in OZR. In this study, we demonstrated that Ser994 of IR is a direct substrate for TANK-binding kinase 1 (TBK1), a new member of the IKK-related kinase family. TBK1 was found to co-immunoprecipitate with the IR, in the liver of OZR supporting an in vivo association between the IR and TBK1. Interestingly, a marked increase in the association between TBK1 and the IR was found in the liver of OZR as well as in other models of insulin resistance/diabetes. Taken together, these findings suggest that TBK1 could be involved in the insulin resistance mechanism related with IR Ser994 phosphorylation in a genetic model of diabetes.


2016 ◽  
Vol 50 (4) ◽  
pp. 229-240 ◽  
Author(s):  
M Slamkova ◽  
S Zorad ◽  
K Krskova

AbstractAdipose tissue expresses all the renin-angiotensin system (RAS) components that play an important role in the adipogenesis, lipid and glucose metabolism regulation in an auto/paracrine manner. The classical RAS has been found to be over-activated during the adipose tissue enlargement, thus elevated generation of angiotensin II (Ang II) may contribute to the obesity pathogenesis. The contemporary view on the RAS has become more complex with the discovery of alternative pathways, including angiotensin-converting enzyme 2 (ACE2)/angiotensin (Ang)-(1-7)/Mas receptor, (pro)renin receptor, as well as angiotensin IV(Ang IV)/AT4 receptor. Ang-(1-7) via Mas receptor counteracts with most of the deleterious effects of the Ang II-mediated by AT1 receptor implying its beneficial role in the glucose and lipid metabolism, oxidative stress, inflammation, and insulin resistance. Pro(renin) receptor may play a role (at least partial) in the pathogenesis of the obesity by increasing the local production of Ang II in adipose tissue as well as triggering signal transduction independently of Ang II. In this review, modulation of alternative RAS pathways in adipose tissue during obesity is discussed and the involvement of Ang-(1-7), (pro)renin and AT4 receptors in the regulation of adipose tissue homeostasis and insulin resistance is summarized.


2007 ◽  
Vol 293 (4) ◽  
pp. H2537-H2542 ◽  
Author(s):  
David W. Stepp ◽  
Erika I. Boesen ◽  
Jennifer C. Sullivan ◽  
James D. Mintz ◽  
Clark D. Hair ◽  
...  

Obesity is an emerging risk factor for renal dysfunction, but the mechanisms are poorly understood. Obese patients show heightened renal vasodilation to blockade of the renin-angiotensin system, suggesting deficits in vascular responses to angiotensin II (ANG II). This study tested the hypothesis that obesity augments renal vasoconstriction to ANG II. Lean (LZR), prediabetic obese (OZR), and nonobese fructose-fed Zucker rats (FF-LZR) were studied to determine the effects of obesity and insulin resistance on reactivity of blood pressure and renal blood flow to vasoconstrictors. OZR showed enlargement of the kidneys, elevated urine output, increased sodium intake, and decreased plasma renin activity (PRA) vs. LZR, and renal vasoconstriction to ANG II was augmented in OZR. Renal reactivity to norepinephrine and mesenteric vascular reactivity to ANG II were similar between LZR and OZR. Insulin-resistant FF-LZR had normal reactivity to ANG II, indicating the insulin resistance was an unlikely explanation for the changes observed in OZR. Four weeks on a low-sodium diet (0.08%) to raise PRA reduced reactivity to ANG II in OZR back to normal levels without effect on LZR. From these data, we conclude that in the prediabetic stages of obesity, a decrease in PRA is observed in Zucker rats that may lead to increased renal vascular reactivity to ANG II. This increased reactivity to ANG II may explain the elevated renal vasodilator effects observed in obese humans and provide insight into early changes in renal function that predispose to nephropathy in later stages of the disease.


2005 ◽  
Vol 288 (2) ◽  
pp. E353-E359 ◽  
Author(s):  
Mihaela C. Blendea ◽  
David Jacobs ◽  
Craig S. Stump ◽  
Samy I. McFarlane ◽  
Cristina Ogrin ◽  
...  

To evaluate the role of renin-angiotensin system (RAS)-mediated oxidative stress in insulin resistance (IR), we compared the effects of the angiotensin II (ANG II) receptor blocker (ARB) valsartan and a superoxide dismutase (SOD) mimetic, tempol, on whole body glucose tolerance and soleus muscle insulin-stimulated glucose uptake in transgenic hypertensive TG(mREN-2)27 (Ren-2) rats. Ren-2 rats and Sprague-Dawley (SD) controls were given valsartan (30 mg/kg) or tempol (1 mmol/l) in their drinking water for 21 days. IR was measured by glucose tolerance testing (1 g/kg glucose ip). IR index (AUCglucose × AUCinsulin) was significantly higher in the Ren-2 animals compared with SD controls (30.5 ± 7.0 × 106 arbitrary units in Ren-2 vs. 10.2 ± 2.4 × 106 in SD, P < 0.01). Both valsartan and tempol treatment normalized Ren-2 IR index. Compared with SD controls (100%), there was a significant increase in superoxide anion production (measured by lucigenin-enhanced chemiluminescence) in soleus muscles of Ren-2 rats (133 ± 15%). However, superoxide production was reduced in both valsartan- and tempol-treated (85 ± 22% and 59 ± 12%, respectively) Ren-2 rats. Insulin (INS)-mediated 2-deoxyglucose (2-DG) uptake (%SD basal levels) was substantially lower in Ren-2 rat soleus muscle compared with SD (Ren-2 + INS = 110 ± 3% vs. SD + INS = 206 ± 12%, P < 0.05). However, Ren-2 rats treated with valsartan or tempol exhibited a significant increase in insulin-mediated 2-DG uptake compared with untreated transgenic animals. Improvements in skeletal muscle insulin-dependent glucose uptake and whole body IR in rats overexpressing ANG II by ARB or SOD mimetic indicate that oxidative stress plays an important role in ANG II-mediated insulin resistance.


2007 ◽  
Vol 293 (3) ◽  
pp. H1327-H1333 ◽  
Author(s):  
Shea Gilliam-Davis ◽  
Valerie S. Payne ◽  
Sherry O. Kasper ◽  
Ellen N. Tommasi ◽  
Michael E. Robbins ◽  
...  

Fischer-344 (F344) rats exhibit proteinuria and insulin resistance in the absence of hypertension as they age. We determined the effects of long-term (1 yr) treatment with the angiotensin (ANG) II type 1 (AT1) receptor blocker L-158,809 on plasma and urinary ANG peptide levels, systolic blood pressure (SBP), and indexes of glucose metabolism in 15-mo-old male F344 rats. Young rats at 3 mo of age ( n = 8) were compared with two separate groups of older rats: one control group ( n = 7) and one group treated with L-158,809 ( n = 6) orally (20 mg/l) for 1 yr. SBP was not different between control and treated rats but was higher in young rats. Serum leptin, insulin, and glucose levels were comparable between treated and young rats, whereas controls had higher glucose and leptin with a similar trend for insulin. Plasma ANG I and ANG II were higher in treated than untreated young or older rats, as evidence of effective AT1 receptor blockade. Urinary ANG II and ANG-(1-7) were higher in controls compared with young animals, and treated rats failed to show age-related increases. Protein excretion was markedly lower in treated and young rats compared with control rats (young: 8 ± 2 mg/day vs. control: 129 ± 51 mg/day vs. treated: 9 ± 3 mg/day, P < 0.05). Long-term AT1 receptor blockade improves metabolic parameters and provides renoprotection. Differential regulation of systemic and intrarenal (urinary) ANG systems occurs during blockade, and suppression of the intrarenal system may contribute to reduced proteinuria. Thus, insulin resistance, renal injury, and activation of the intrarenal ANG system during early aging in normotensive animals can be averted by renin-ANG system blockade.


2010 ◽  
Vol 163 (4) ◽  
pp. 601-607 ◽  
Author(s):  
Omar S Al-Attas ◽  
Nasser M Al-Daghri ◽  
Majed S Alokail ◽  
Assim Alfadda ◽  
Ahmed Bamakhramah ◽  
...  

ObjectiveStudies in obesity have implicated adipocytokines in the development of insulin resistance, which in turn may lead to accelerated aging. In this study, we determined associations of chromosomal telomere length (TL) to markers of obesity and insulin resistance in middle-aged adult male and female Arabs with and without diabetes mellitus type 2 (DMT2).Design and methodsOne hundred and ninety-three non-diabetic and DMT2 subjects without complications (97 males and 96 females) participated in this cross-sectional study. Clinical data, as well as fasting blood samples, were collected. Serum glucose and lipid profile were determined using routine laboratory methods. Serum insulin, leptin, adiponectin, resistin, tumor necrosis factor-α, and PAI-1 were quantified using customized multiplex assay kits. High sensitive C-reactive protein (hsCRP) and angiotensin II (ANG II) were measured using ELISAs. Circulating leukocyte TL was examined by quantitative real-time PCR.ResultsCirculating chromosomal leukocyte TL had significant inverse associations with body mass index (BMI), systolic blood pressure, fasting insulin, homeostasis model assessment of insulin resistance (HOMA-IR), low-density lipoprotein (LDL)- and total cholesterol, ANG II and hsCRP levels. Adiponectin, BMI, systolic blood pressure, and LDL cholesterol predicted 47% of the variance in TL (P<0.0001). HOMA-IR was the most significant predictor for TL in males, explaining 35% of the variance (P=0.01). In females, adiponectin accounted for 28% of the variance in TL (P=0.01).ConclusionObesity and insulin resistance are associated with chromosomal TL among adult Arabs. Evidence of causal relations needs further investigation. The positive association of adiponectin to TL has clinical implications as to the possible protective effects of this hormone from accelerated aging.


2007 ◽  
Vol 293 (3) ◽  
pp. R974-R980 ◽  
Author(s):  
Erik J. Henriksen

The reduced capacity of insulin to stimulate glucose transport into skeletal muscle, termed insulin resistance, is a primary defect leading to the development of prediabetes and overt type 2 diabetes. Although the etiology of this skeletal muscle insulin resistance is multifactorial, there is accumulating evidence that one contributor is overactivity of the renin-angiotensin system (RAS). Angiotensin II (ANG II) produced from this system can act on ANG II type 1 receptors both in the vascular endothelium and in myocytes, with an enhancement of the intracellular production of reactive oxygen species (ROS). Evidence from animal model and cultured skeletal muscle cell line studies indicates ANG II can induce insulin resistance. Chronic ANG II infusion into an insulin-sensitive rat produces a markedly insulin-resistant state that is associated with a negative impact of ROS on the skeletal muscle glucose transport system. ANG II treatment of L6 myocytes causes impaired insulin receptor substrate (IRS)-1-dependent insulin signaling that is accompanied by augmentation of NADPH oxidase-mediated ROS production. Further critical evidence has been obtained from the TG(mREN2)27 rat, a model of RAS overactivity and insulin resistance. The TG(mREN2)27 rat displays whole body and skeletal muscle insulin resistance that is associated with local oxidative stress and a significant reduction in the functionality of the insulin receptor (IR)/IRS-1-dependent insulin signaling. Treatment with a selective ANG II type 1 receptor antagonist leads to improvements in whole body insulin sensitivity, enhanced insulin-stimulated glucose transport in muscle, and reduced local oxidative stress. In addition, exercise training of TG(mREN2)27 rats enhances whole body and skeletal muscle insulin action. However, these metabolic improvements elicited by antagonism of ANG II action or exercise training are independent of upregulation of IR/IRS-1-dependent signaling. Collectively, these findings support targeting the RAS in the design of interventions to improve metabolic and cardiovascular function in conditions of insulin resistance associated with prediabetes and type 2 diabetes.


Endocrinology ◽  
2008 ◽  
Vol 149 (11) ◽  
pp. 5643-5653 ◽  
Author(s):  
Javad Habibi ◽  
Adam Whaley-Connell ◽  
Melvin R. Hayden ◽  
Vincent G. DeMarco ◽  
Rebecca Schneider ◽  
...  

Emerging evidence indicates that pancreatic tissue expresses all components of the renin-angiotensin system. However, the functional role is not well understood. This investigation examined renin inhibition on pancreas structure/function in the transgenic Ren2 rat harboring the mouse renin gene, a model of tissue renin overexpression. Renin is the rate-limiting step in the generation of angiotensin II (Ang II), which stimulates the generation of reactive oxygen species in a variety of tissues. Overexpression of renin in Ren2 rats results in hypertension, insulin resistance, and cardiovascular and renal damage. Young (6–7 wk old) insulin-resistant male Ren2 and age-matched insulin sensitive Sprague Dawley rats were treated with the renin inhibitor, aliskiren (50 mg/kg·d by ip injection), or placebo for 21 d. At 21 d, the Ren2 demonstrated insulin resistance with increased islet insulin, Ang II, and reduced total insulin receptor substrate (IRS)-1, IRS-2, and Akt immunostaining. There was increased islet nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activity and subunits (p47phox and Rac1) as well as increased nitrotyrosine immunostaining (each P &lt; 0.05). These functional abnormalities were associated with a disordered islet architecture; increased islet-exocrine interface, pericapillary fibrosis, and structurally abnormal mitochondria and content in endocrine and exocrine pancreas. In vivo treatment with aliskiren normalized systemic insulin resistance and islet insulin, Ang II, NADPH oxidase activity/subunits, and nitrotyrosine and improved total IRS-1 and Akt phosphorylation (each P &lt; 0.05) as well as islet/exocrine structural abnormalities. Collectively, these data suggest that pancreatic functional/structural changes are driven, in part, by tissue renin-angiotensin system-mediated increases in NADPH oxidase and reactive oxygen species generation, abnormalities attenuated with direct renin inhibition.


Sign in / Sign up

Export Citation Format

Share Document