Characterization of antimicrobial resistance and virulence genes of Pseudomonas aeruginosa isolated from mink in China, 2011–2020

2021 ◽  
pp. 105323
Author(s):  
Li-li Guo ◽  
Lu-mei Li ◽  
Yan Li ◽  
Xiao-xiao Duan ◽  
Yu-jing Liu ◽  
...  
10.3823/840 ◽  
2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Islam A. Babour ◽  
Maha B. Mohamed ◽  
Asem A Shehabi

Background: Pseudomonas aeruginosa is a pathogenic organism responsible for frequent wound and nosocomial infections worldwide. Its infections are difficult to control since the organism is known to rapidly develop antibiotic resistance and becomes multidrug-resistant (MDR) during treatment of patients. Aim of the study: This study was intended to investigate the occurrence of certain important types of (ESBL) and (MBL) enzymes in association with important specific virulence factors  associated with P. aeruginosa clinical isolates from Khartoum, Sudan. Methods: This study investigated 70 P. aeruginosa isolates which were collected from patients admitted to four major hospitals in Khartoum  (Fedail, Ribat, Ibn Sina and Soba hospitals). These isolates were recovered from 40 wound swabs (57.1%), 27 urine samples (38.6%), and 3 pleural fluid samples (4.3%) of patients. Higher numbers of isolates were recovered from males 42 (60%) than in females 28 (40%). All P. aeruginosa isolates were first confirmed by conventional biochemical and second using molecular PCR tests.   PCR methods were also used for detecting the presence of the virulence genes ToxA, AlgD, LasB, exoS, exoU, CTX, GES-1, and genes of VIM, IMP, KPC, CTX, VEB-1 and SHV-1. Results:   Antimicrobial susceptibility testing of P. aeruginosa isolates showed a high resistance to azetronam 49 (70%), followed by ceftazidime 32 (45.7%), 16 ciprofloxacin (22.9%), gentamicin 13 (18.6 %), piperacillin-tazobactam 11 (15.7%), amikacin 9 (12.9 %), and imipenem 6 (8.6%) showed the least resistance. All isolates were positive for algD and lasB (100%), followed by toxA (90%), exoS (34.3), exoU (24.3%), respectively. The rates of detected ESBL genes blaTEM, blaCTX-m, blaSHV-1,GES-1, were 3.3%, 6.6%, 10%, 3.3%,10%, respectively, but all isolates were negative for bla-KPC and bla- VIM and IMP . The percentages of pigment production were 61.4% for pyocyanin, 37.1% for pyoverdin and 1.4% for pyorubin. Conclusion: The study demonstrated high rates of antimicrobial resistance markers to most commonly used antibiotics in treatment of P. aeruginosa infections. The majority of the isolates from urine and wound samples carried at least three potential virulence factor genes of algD, lasB and toxA and without any significant relation to their antimicrobial resistance markers.  


Antibiotics ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 177 ◽  
Author(s):  
Yael Yagel ◽  
Stephanie Sestito ◽  
Yair Motro ◽  
Anat Shnaiderman-Torban ◽  
Boris Khalfin ◽  
...  

Ochrobactrum is a ubiquitous Gram-negative microorganism, mostly found in the environment, which can cause opportunistic infections in humans. It is almost uniformly resistant to penicillins and cephalosporins through an AmpC-like β-lactamase enzyme class (OCH). We studied 130 assembled genomes, of which 5 were animal-derived isolates recovered in Israel, and 125 publicly available genomes. Our analysis focused on antimicrobial resistance (AMR) genes, virulence genes, and whole-genome phylogeny. We found that 76% of Ochrobactrum genomes harbored a blaOCH β-lactamase gene variant, while 7% harbored another AmpC-like gene. No virulence genes other than lipopolysaccharide-associated genes were found. Core genome multilocus sequence typing clustered most samples to known species, but neither geographical clustering nor isolation source clustering were evident. When analyzing the distribution of different blaOCH variants as well as of the blaOCH-deficient samples, a clear phylogenomic clustering was apparent for specific species. The current analysis of the largest collection to date of Ochrobactrum genomes sheds light on the resistome, virulome, phylogeny, and species classification of this increasingly reported human pathogen. Our findings also suggest that Ochrobactrum deserves further characterization to underpin its evolution, taxonomy, and antimicrobial resistance.


2020 ◽  
Vol 11 ◽  
Author(s):  
Lei Wei ◽  
Qingping Wu ◽  
Jumei Zhang ◽  
Weipeng Guo ◽  
Qihui Gu ◽  
...  

Pseudomonas aeruginosa is an important opportunistic pathogen and remains a major threat to the microbial safety of drinking water. There is a lack of comprehensive data on P. aeruginosa contamination in drinking water in China. Therefore, this study aimed to determine the prevalence, genetic diversity, virulence genes, and antimicrobial resistance of P. aeruginosa isolated from mineral water and spring water in China. From January 2013 to January 2014, 314 drinking water samples were collected from 23 cities in China. Of the collected samples, 77 (24.5%) were contaminated with P. aeruginosa, and these comprised 34 raw water (30.4%), 39 activated carbon-filtered water (30.6%), and four final water product (3.9%). A total of 132 P. aeruginosa isolates were obtained, and all of them showed the presence of virulence genes, with the detection rates of ExoU, ExoS, phzM, toxA, and lasB genes being 7.6, 86.3, 95.5, 89.4, and 100%, respectively. All isolates were sensitive to the 14 antibiotics (ciprofloxacin, levofloxacin, ofloxacin, norfloxacin, gentamicin, tobramycin, amikacin, polymyxin B, imipenem, meropenem, aztreonam, ceftazidime, cefepime, and piperacillin/tazobactam) tested. The 132 isolates were categorized into 42 sequence types according to multilocus sequence typing, and ST235 accounted for 8.3% (11) of the total isolates. Thus, this study provides comprehensive data on the prevalence and characteristics of P. aeruginosa in drinking water in China and can aid in developing preventive measures against contamination during the drinking water treatment process.


Sign in / Sign up

Export Citation Format

Share Document